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Abstract

We consider the problem of grooming traÆc in WDM star and tree networks to minimize

equipment cost. We prove an important result regarding wavelength assignment in both

topologies. We present a series of lower and upper bounds on the optimal solutions for both

star and tree networks. The bounds allow us to evaluate a set of heuristics we also develop.

1 Introduction

Wavelength division multiplexing (WDM) technology has the potential to satisfy the ever-
increasing bandwidth needs of network users on a sustained basis. In WDM networks, nodes
are euipped with optical cross-connects (OXCs), devices which can optically switch a signal on
a wavelength from any input port to any output port, making it possible to establish lightpath
connections between any pair of network nodes. The set of lightpaths de�nes a logical topology,
and the problem arises of designing logical topologies that optimize a performance measure of
interest for a set of traÆc demands. This problem has been studied extensively; for a detailed
discussion see [1]. Typically, the objective has been to minimize the number of wavelengths, to
optimize a network-wide metric (such as delay or congestion), or a combination of the two.

With the deployment of commercial WDM systems, it has become apparent that the cost of
network components, especially line terminating equipment (LTE), is the dominant cost and is a
more meaningful metric to optimize than, say, the number of wavelengths. Since the data rates
at which each wavelength operates continue to increase, it is clear that a number of independent
traÆc components must be multiplexed in order to eÆciently utilize the wavelength capacity.
TraÆc grooming [2] refers to the techniques used to combine lower speed components onto
wavelengths in order to minimize cost. Given the widespread use of SONET/SDH networks,
early work has focused on ring topologies [3]-[9].

In this paper we consider the problem of traÆc grooming in tree networks, using star
networks as building blocks. Despite their simplicity, these topologies are important in their
own right: star networks arise in the interconnection of LANs or MANs with a wide area
backbone [10], while passive optical networks (PONs) [11, 12] and cable TV networks (which
are increasingly used for high-speed Internet access) are based on a tree topology. Our work
can thus be applied directly to these environments. Also, we may tackle the traÆc grooming
problem in mesh networks by decomposing them into stars, trees, and paths. While such
a decomposition is outside the scope of this paper, the study of star and tree networks can
provide insight into the general problem.

TraÆc grooming remains NP-hard even for star or tree networks, and our focus is on de-
veloping bounds and heuristics. Our main results are as follows. First, we prove that in WDM
networks with a star or tree topology, wavelength assignment can be performed in polynomial
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time for any feasible logical topology, thus it can be eliminated simplifying the problem. For
stars, we obtain a sequence of lower and upper bounds which permit a tradeo� between the
quality of the solution and the computational requirements; the sequence of upper bounds yields
an approximation algorithm for the traÆc grooming problem. For trees, we also present lower
and upper bounds. For both topologies we present results which indicate that the performance
of simple greedy heuristics is quite good.

In Section 2 we de�ne the traÆc grooming problem and present the results on wavelength
assignment. In Section 3 we develop upper and lower bounds on the optimal solution as well
as heuristics for tree networks. We present numerical results in Section 4, and we conclude in
Section 5.

2 Problem De�nition

2.1 Star Network

We consider a network in the form of a star S with N + 1 nodes. There is a single hub node
which is connected to every other node by a physical link. The N nodes other than the hub are
numbered from 1 to N in some arbitrary order, and the hub node is numbered 0. Each physical
link consists of a �ber in each direction, and each �ber can carry W wavelengths. The traÆc
demands between each pair (s; d) of nodes are given in the matrix T = [t(sd)]. The network
carries traÆc at rates that are a multiple of some basic rate (e.g., OC-3). We let C denote the
capacity of each wavelength expressed in units of this basic rate. Parameter C is also known
as the granularity of traÆc. For example, if each wavelength runs at a rate of OC-48 and the
basic rate is OC-3, then C = 16. Each quantity t(sd) 2 f0; 1; 2; � � �g is also expressed in terms of
the basic rate, and it denotes the number of traÆc units that originate at node s and terminate
at node d.

We are interested in designing a logical topology by establishing lightpaths between pairs of
nodes over the physical star network. We assume that no traÆc component can traverse the
same physical link more than once in either direction. This assumption ensures that bandwidth
is not used up without bound by a single traÆc component. Consequently, no node except
for the hub will switch traÆc, either electronically or optically. In other words, the hub is
the only node which sees traÆc neither originated by, nor destined to, it. The hub node is
equipped with an OXC with N incoming and N outgoing ports. Thus there will be only two
kinds of lightpaths in the logical topology: single-hop lightpaths which either originate at a non-
hub node and terminate at the hub, or vice versa; and two-hop lightpaths that originate and
terminate at non-hub nodes, and are switched optically at the hub. We assume that wavelength
converters are not available, therefore, a lightpath must be assigned the same wavelength on
all links along its path. We also allow for multiple lightpaths between the same source and
destination nodes.

In a star topology it is straightforward to determine how much traÆc will ow over each
�ber for a given traÆc matrix. If this aggregate traÆc is more than the total bandwidth (WC)
of the �ber at any of the links, the problem instance is obviously not feasible. Conversely, if
the aggregate traÆc originating and terminating at each non-hub node is at most WC, then
the traÆc can always be carried by a logical topology with W single hop lightpaths on each
direction of each physical link and no two-hop lightpaths; thus the problem instance is feasible.
We call this the completely opaque topology, since all the traÆc between any two nodes must
be electronically switched at the hub node.

While the completely opaque topology can be used to carry any feasible traÆc demand,
it has several drawbacks. First, it introduces huge demands in the processing and bu�ering
capacity of the hub. Second, the hub node must be equipped with a number of LTE equal to
NW . Since LTE are one of the most expensive components in optical networks, realizing the
completely opaque topology may be prohibitively expensive. (Note that non-hub nodes must



be equipped with a suÆcient number of LTE to handle their own traÆc, but these LTE are
required regardless of the topology, opaque or transparent.) Finally, the completely opaque
topology is not scalable, since upgrading the network (by adding more nodes/wavelengths per
�ber) requires adding more capacity/LTE at the hub node.

In [13], we have considered the problem of traÆc grooming in star networks in order to
minimize the network cost. We have formulated the traÆc grooming problem in stars as an
integer linear program (ILP), conjectured that the problem remains suÆciently general for
an exact solution to be computationally intractable, and described an approximation scheme
to obtain successively better lower and upper bounds on the optimal solutions, as well as
successively better heuristic solutions.

2.2 Tree Network

A star can be viewed as a special case of the more general tree topology. We extend our
observations above to a physical topology in the form of a tree T with N nodes. We distinguish
between leaf nodes which have degree one, and interior nodes which have degree greater than
one. As with the star, each edge of the undirected tree consists of two �ber links, one in each
direction. The number of wavelengths W , the granularity C, and the traÆc matrix T have
similar signi�cance as for the star topology.

We again make the assumption that a traÆc component is allowed to traverse the same
physical link at most once in any direction. Therefore, a traÆc component from a given source
node to a given destination node will follow a unique path through the tree. Interior nodes
are equipped with OXCs, and are the only nodes that switch traÆc, electronically or optically.
Leaf nodes are similar to non-hub nodes in the star in that they never handle any traÆc other
than that originated or terminated by them.

Because of the unique routing, feasibility of a problem instance can be determined by
summing up the traÆc owing over each directed link. If this total exceeds the capacity WC

for any �ber, then the problem instance is not feasible; otherwise, it is feasible because it can
be carried by the completely opaque topology with W single-hop lightpaths over each physical
link in each direction.

The problem of grooming traÆc in order to minimize the total amount of electronic switching
in the tree can also be formulated as an ILP. Because a star is a special case of a tree, it follows
that the full virtual topology problem is intractable for the tree topology as well.

2.3 Wavelength Assignment

In general, wavelength assignment is a hard subproblem of the virtual topology problem [1].
However, in [9] we showed that wavelength assignment is simple for path networks. The two
lemmas below show that wavelength assignment is straightforward for star and tree networks.

Lemma 2.1 Consider a virtual topology on a star, in which the maximum number of lightpaths
on any link is L. A wavelength assignment that uses exactly L wavelengths exists and can be
obtained in time polynomial in N and L.

Lemma 2.2 Consider a virtual topology on a tree, in which the maximum number of lightpaths
on any link is L. A wavelength assignment that uses exactly L wavelengths exists and can be
obtained in time polynomial in N and L.

The proofs of the lemmas are quite involved, but due to the page limit we cannot include
them here; they can be found in [13]. The proof of Lemma 2.1 uses a corollary of Hall's matching
theorem for L-regular bipartite multigraphs. The proof of Lemma 2.2 provides an algorithm
which performs wavelength assignment by decomposing the tree into stars and applying the
result of Lemma 2.1



The implication of Lemmas 2.1 and 2.2 is that once a feasible topology that minimizes
electronic switching has been obtained for a star or tree network, assigning wavelengths to the
lightpaths can be performed in polynomial time. While the traÆc grooming problem remains
NP-hard, the lemmas make the development of bounds and of heuristics a bit easier, since they
allow us to eliminate the wavelength assignment subproblem from consideration.

3 Heuristics and Bounds for Tree Networks

3.1 Star Network Results

We have obtained bounds and heuristic solutions for star networks in [13]. The search space of
the problem is quite large: for N non-hub nodes, each of the N(N � 1) traÆc components may
be either electronically switched at the hub or optically bypass it, and a brute-force algorithm
would have to evaluate a space of 2N(N�1) combinations. We described a search tree of partial
and complete solutions to the star network problem instance, and presented an algorithm which
visited each valid solution no more than once while avoiding any invalid solutions. We employed
pruning techniques similar to branch-and-bound searches, as well as pruning speci�c to the
problem, to make the search eÆcient. Most importantly, the incremental nature of the algorithm
allows practical bene�ts to be obtained without completing the exhaustive search. In particular,
at any intermediate stage of the generation of the full search tree, we can extract a lower
bound and an upper bound on the optimal solution. The upper bound is based on a feasible
(suboptimal) solution to the problem instance, providing a heuristic solution corresponding to
any intermediate search tree. We de�ned 	i and �i to be the upper and lower bounds obtained,
respectively, at the intermediate stages of the search tree in which the search tree is generated
completely upto depth i, but not beyond, and showed that f	ig and f�ig are strong sequences
of bounds; that is, successive bounds in each sequence are at least as strong as the previous ones,
as i increases. Finally, we also showed that with the proper choice of parameters, the bounds
approach each other (and the optimal, which is bracketed) with provably good characteristics.
In particular, for the i-th upper and lower bound, we have:

	i � �i �

�
1�

i

N(N � 1)
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We also discussed a greedy algorithm that performs very well, and showed how to combine
the bene�ts of the heuristics above with provably good characteristics and those of the greedy
algorithm. The solution obtained at depth i of the search tree after enhancing f	ig with the

greedy algorithm was denoted by 	
(g)
i , and was shown to be at least as good as that without

the greedy enhancement.

3.2 Decomposition into Star Networks

The leaf nodes of a tree network do not route traÆc either electronically or optically, and we
concentrate on the interior nodes. Consider an interior node p of tree T , and the set of nodes

fq1; q2; � � � ; qng adjacent to p in T . We de�ne the (n+ 1)� (n+ 1) matrix T (Sp) = [�
(p)
ij ] as:

�
(p)
ij =

8>>>>>>>>>><
>>>>>>>>>>:

P
t(sd) over (s; d) : s 6= p; d 6= p; t(sd) traverses
links (qi; p); (p; qj);8i 6= j 2 f1; � � � ; ngP
t(sp)over s : s 6= p; t(sp)traverses the
link (qi; p);8i 2 f1; � � � ; ng; j = 0P
t(pd) over d : d 6= p; t(pd) traverses the link
(p; qj);8j 2 f1; � � � ; ng; i = 0

0; otherwise

(2)



This matrix represents the traÆc of the tree T seen from the point of view of interior node
p. Now consider T (Sp) as the traÆc matrix for a star network Sp. The hub node of this star
network sees exactly the same traÆc scenario as that seen by node p in the tree network, and
we speak of Sp as being the \decomposed star network" for node p.

In the star, no node other than the hub does any electronic or optical routing. Thus, the
optimal value of electronic routing for the star denotes the optimal (minimum) value of the
electronic routing by the hub node of the star only. Since node p is locally in the same traÆc
scenario as the hub of its decomposed star network, this is the minimum amount of electronic
routing that node p can perform in the tree T under any virtual topology and traÆc grooming
solution. We denote this quantity by �T (p), thus �T (p) is the value of electronic routing that
would be obtained by solving the decomposed star Sp optimally. We also note that f�ig and

f	
(g)
i g for the star Sp are upper and lower bounds on its optimal electronic routing value and

hence on �T (p).

3.3 Lower Bounds

Since the amount of electronic routing performed by the di�erent interior nodes of the tree are
disjoint quantities, the quantity

P
p �T (p) is a lower bound on the amount of total electronic

routing performed in any virtual topology, and hence on the optimal value of electronic routing
in the tree. However, solving the decomposed star network may not be practically possible
for an internal tree node p. In other words, the quantity �T (p) may not be readily available.
However, using our method of successively better approximations for stars, we can obtain as
good a lower bound on �T (p) as the computation required makes practical. Let us denote the

actual lower bound used on �T (p) by �
(i)
T (p). This quantity is chosen out of the quantities

f�ig for the decomposed star network of the node p. The closeness with which we approach

�T (p) may be di�erent for every p. Now the quantity
P

p �
(i)
T (p) is still a lower bound on the

optimal electronic routing for tree T , though a weaker one. However, such a bound requires

much less computation to determine. Thus, we can consider the lower bounds f
P

p �
(i)
T (p)g to

be a sequence of bounds on the optimal electronic routing for the tree network, where each

�
(i)
T (p) = �i for the decomposed star of p is an increasingly better lower bound on �T (p). Since
f�ig for the star is a strong sequence of bounds, so is the sequence of bounds for the tree that
we have described.

3.4 Upper Bounds and Heuristic Solutions

We now show how to obtain a feasible solution to the tree network using the solutions for
the star network. We call an interior node of the tree network opaque if it routes all traÆc
electronically. (Conversely, if a node performs optical routing without any restriction other
than traÆc and wavelength constraints, we call it a transparent node.) As with the star, we
can create a feasible virtual topology in which no node routes any traÆc optically. All traÆc
at all interior nodes is routed electronically, creating a completely opaque topology as before.
Since this is a feasible topology, the amount of electronic routing performed in this topology
is an upper bound on the optimal; in fact, it is the loosest such bound because there is no
virtual topology in which more electronic routing will need to be performed. Let the amount
of electronic routing an interior node p does as an opaque node in the tree be  T (p). Then, the
completely opaque upper bound is given by 	T =

P
p  T (p).

However, realistically we would like to use the optical routing capability of the nodes and
create a solution to the tree network in which the amount of electronic routing to be performed
is reduced from the maximum at least at some nodes. Recall that �T (p) is the minimum amount
of electronic routing node p can do locally. However, to attain this value, the traÆc to/from
other nodes from/to node p must be groomed according to the optimal solution to S(p). For two
interior nodes p and q which are adjacent, it will not in general be possible to simultaneously



attain �T (p) and �T (q) as electronic routing values, because the optimal solutions of the two
decomposed stars will in general require the same traÆc component in the tree to be di�erently
groomed. For this reason, the lower bound we derived in the last section will in general be
unattainable.

To examine what combinations of star decompositions may nevertheless be useful in creating
feasible solutions for the tree network, consider a decomposed star network for an interior node
p. The hub node corresponds to p, whereas the other nodes of the star correspond to the nodes
of the tree that are adjacent to p in T . Some of these nodes may be leaf nodes of the tree,
in which case the solution to the decomposed star may be transferred to the tree without any
change. However, in general some of the non-hub nodes of the star will be other interior nodes
of the tree, and will have their own star decompositions. To create a feasible solution to the
tree, we must adopt some method of reconciling the star solutions for adjacent interior nodes
of the tree. Below we propose two methods of doing this.

3.4.1 Solution with Opaque Nodes

An opaque node electronically routes all traÆc that passes through it. While this is wasteful
in terms of electronic routing, an opaque node optically terminates and originates all traÆc,
so that the traÆc components can be rearranged and reassigned to lightpaths arbitrarily. It is
easy to see that the conict between star solutions to adjacent interior nodes does not arise if
the decomposed star for one of the interior nodes is solved optimally while the other one is left
as an opaque node. In other words, if we interpose at least one opaque node between every two
transparent nodes of the tree (for which we solve the decomposed star optimally), then there
is no problem in combining the corresponding star solutions.

In such a solution, each node p performs either �T (p) amount of electronic routing (the
best possible), or  T (p) (the worst). For the best topology which utilizes a combination of
transparent and opaque nodes, we would like to choose the nodes such that we get greatest
bene�t in terms of electronic routing. Ideally, we would like to �nd the set of nodes Nt to
be designated as transparent nodes, (composed of pairwise non-adjacent interior nodes) such
that

P
p2R( T (p) � �T (p)) is maximized. However, this is equivalent to �nding a maximal

independent set in a graph, which is NP-complete [14]. An eÆcient way to pick Nt is to utilize
the level ordering of the tree T . Designate any interior node r as the root of the tree. We
partition the interior nodes of the tree into two sets, N0 and N1, such than N0 contains all
interior nodes which are at even depth of the tree from the root r (including r itself), and N1

contains all interior nodes at odd depth. Now either of the sets N0 and N1 may be used as the
set Nt of transparent nodes, and the other as the set of opaque nodes. Since every adjacent
node to a node p 2 N0 is from N1 and vice versa, it is obvious that any choice for the root r
will yield the same two sets N0 and N1, albeit possibly exchanged.

This may seem like a quite arbitrary method of determining Nt, but actually this is a fairly
good approximation algorithm. To see this, consider that ifN0 is designated to be Nt, each node
pt in N0 will perform electronic routing to the amount of �T (pt) only, representing a bene�t ofP

pt2N0
( T (pt) � �T (pt)) for the whole set N0. We call this the \bene�t" of the set of nodes

N0 and denote it by B(N0). We de�ne B(N1) in a similar manner. Now the completely opaque
solution incurs electronic routing to the amount of 	T as de�ned above, and the lower bound
we derived in Section 3.3 (possibly unattainable) shows that the maximum saving in electronic
routing for the entire tree is bounded by

P
p( T (p) � �T (p)) = B(N0) + B(N1). By choosing

Nt to be the set among N0 and N1 with the larger bene�t, we are guaranteed to approach the
optimal at least by 50%.



3.4.2 Solution with Semi-Opaque Nodes

While we obtain a good solution by solving the tree with alernating opaque and transparent
nodes, we may miss opportunities to groom traÆc at the opaque nodes. Also, the amount
of electronic routing is distributed unevenly, maximum possible for some nodes and minimum
possible for others. We now propose an approach which does not share these characteristics.
The key observation is that if we impose the solution obtained from a decomposed star for a
node p in the tree, another interior node q adjacent to p needs to be opaque in the solution to
the tree with respect to p, but not necessarily to other nodes.

Designate an interior node r as the root of the tree. Let r be a transparent node, and
impose the solution of the decomposed star Sr on the tree network. For each child p of r, create
a decomposed star after the fashion of Section 3.2, with the following di�erence: every traÆc
component to and from the non-hub node corresponding to r to any other non-hub node q is
constrained to be electronically routed at the hub node. A traÆc component in the tree which
would normally be represented by a traÆc component from q to r in the star decomposition for
p is now represented by two traÆc components, each of the same magnitude as the original, one
from q to the hub p and another from p to r. In the optimal solution to such a star, there will
be no lightpaths formed to/from r that pass optically through p, because there is no traÆc for
such a lightpath to carry. At the same time, the traÆc scenario locally seen by node p has been
preserved, under the assumption that the traÆc to/from node r cannot be optically routed.
We call this the star decomposition of node p constrained by node r, and we refer to node p
as a semi-opaque node. The optimal solution to such a star can be implemented without any
conict with the optimal solution for the decomposed star for r in the tree network. Similarly,
we would create star decompositions for each child q of p constrained by p, and so on down
the tree. All the constrained star networks will be consistent, that is, it will be possible to
implement the solutions in the tree network without conict.

Although the solution with semi-opaque nodes is likely to distribute the electronic routing
load more evenly through the tree, it is diÆcult to characterize the total amount of electronic
routing performed and set meaningful bounds on the improvement over the completely opaque
topology. We note that the choice of the root r characterizes the solution (because r is the only
interior node that is transparent, the others being semi-opaque). Thus, the algorithm can be
repeated with each interior node designated as a root and the best solution adopted, increasing
the algorithm complexity by a linear factor.

In our solution to the tree, we require the optimal amount of electronic routing for the
decomposed star (possibly constrained by another node) to be available. If the amount of
computation required precludes determining the optimal value for a star network, then the best

available upper bound from the sequence of bounds f	ig or f	
(g)
i g may be used instead in

the tree solution. For obvious reasons, the solutions obtained for the tree network will still
be feasible, and the total electronic routing values will still represent upper bounds (though
less tight). As tighter and tighter upper bounds for the optimal star solutions are used (at
progressively greater computational costs), the upper bound obtained for the tree network will
also grow tighter.

3.5 Greedy Heuristics

In this section we describe two greedy heuristics for the tree network. Because the sequence of
feasible solutions we have proposed above get progressively more costly to compute, eÆcient
greedy heuristics would be valuable; and because our solutions never form lightpaths of more
than two hops, greedy heuristics have a good chance of outperforming them in speci�c cases.

Both heuristic algorithms start by reducing the traÆc matrix as described in Section 3.4,
then ordering the reduced traÆc elements in descending order and attempting to optically route
the traÆc components in this order. The �rst algorithm, which we call \Greedy-A", attempts



to route a traÆc component optically at each intermediate node along its path. If this fails
for a traÆc component (because there is not suÆcient bandwidth at some intermediate link to
accomodate the rest of the traÆc that must ow over than link, if this traÆc component is given
a lightpath), then we abandon that traÆc component, consigning it to be electronically routed
at each intermediate node, and go on to the next traÆc component in the greedy ordering. The
algorithm terminates when all traÆc components have been examined.

The second algorithm, called \Greedy-B', does not abandon a traÆc component if it cannot
be optically routed at every intermediate node, but rather takes a \best-e�ort" approach,
optically routing it whenever possible, electronically routing it otherwise. Thus, if a traÆc
component cannot be optically routed along its entire path, Greedy-A will leave it to be carried
on single hop ligthpaths on each of the links it traverses, but Greedy-B may form some lightpaths
covering part of the path. It may appear that Greedy-B makes more of an e�ort to optically
route traÆc and is guaranteed to give better results overall, but this is not true in general.
When Greedy-A leaves a traÆc component not optically routed at an intermediate node that
Greedy-B would have routed it, some extra bandwidth remains that may lead to more eÆcient
grooming for some traÆc components later in the greedy ordering. Thus, depending on the
problem instance, either algorithm might outperform the other.

4 Numerical Results

We now present a sampling of the results we have obtained for star and tree networks; for a
more complete set of results the reader is referred to [13].

4.1 Star Networks

We characterize a traÆc matrix for a star network by two parameters: the loading factor and
the amount of hub traÆc. The loading factor is the sum of all the traÆc components expressed
as a percentage of the total bandwidth available in the network (i.e., the total bandwidth of
all the �ber links). For low values of loading, the network is underutilized; such networks are
not interesting as it is likely that every traÆc component can be given a lightpath. For 100%
loading, only traÆc components equal to C can be given a lightpath, all other traÆc must be
electronically switched at the hub. The interesting and most realistic operating condition is
when the loading factor is just under 100%, so that opportunities for grooming exist without
the problem being trivial; thus, we present results for a loading factor of 90%. The amount
of hub traÆc is the (average) fraction of the total traÆc on each link that is accounted for by
traÆc to and from the hub. We present results for two values of the hub traÆc, 30% and 60%.

For the results shown in Figures 1-2 we have used W = 24 wavelengths, C = 16, and the
number of non-hub nodes N = 8; 10. The �gures plot the grooming e�ectiveness of the series
of upper and lower bounds against the level i of the search tree. The grooming e�ectiveness is
the total amount electronic routing expressed as a fraction of the amount of electronic routing
for the completely opaque virtual topology. Three curves are plotted, one for the series f�ig

of lower bounds, one for the series f	ig of upper bounds, and one for the series f	
(g)
i g of

upper bounds (denoted as \Greedy enhanced" in the �gures) computed by applying the greedy
algorithm to complete a mask matrix rather than the pessimistic completion used for f	ig.
We observe that the sequence of upper and lower bounds do indeed converge to the optimal
relatively quickly. For N = 8; 10, we were able to reach the optimal within a few minutes of
computation on a SUN Sparc-10 workstation. In fact, the optimal is reached before all levels of
the search tree are considered (for N = 8 the maximum number of levels is 56, and for N = 10

it is 90). We also observe that the series f	
(g)
i g of upper bounds outperforms the series f	ig.
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Figure 1: Star result: N = 8, 60% hub traÆc
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Figure 2: Star result: N = 10, 30% hub traÆc
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Figure 3: Ensemble of tree networks: C = 16
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Figure 4: Ensemble of tree networks: C = 32

4.2 Tree Networks

We generated trees such that each interior node has between 2 and 7 adjacent nodes. Thus the
number of leaf nodes (likely to represent tra�c endpoints) is a large fraction of the total number
of nodes. We considered matrices with high loading because these are of interest, as before,
and traÆc components were drawn from distributions with means inversely proportional to the
path length. We used values of W between 70-200, and of C between 16-48.

Figures 3 and 4 plot the grooming e�ectiveness of the solutions using opaque or semi-
opaque nodes, and the two greedy heuristics, Greedy-A and Greedy-B. Each �gure plots results
for 25 tree networks, Figure 3 for C = 16 and Figure 4 for C = 32. The solution to trees
which combines star networks with opaque nodes reduces electronic routing by at least half,
and it consistently outperforms the solution using semi-opaque nodes. The greedy heuristics
perform very well in all cases. However, since they are both based on giving full lightpaths to
individual traÆc components, it is not surprising that with a larger granularity of traÆc to be
groomed (see Figure 4 with C = 32), the greedy heuristics start to show less advantage over
the decomposition methods, which are able to groom di�erent traÆc components into the same
lightpath. That is, the extra computation required to compute the feasible solutions combining
star networks is likely to be justi�ed by a greater gain in grooming as the granularity increases
and the grooming problem becomes more diÆcult. Greedy-B is seen to consistently outperform
Greedy-A. This result may be expected since Greedy-B generally requires a signi�cantly larger



amount of computation than Greedy-A.
Overall, these results indicate that signi�cant gains in terms of electronic routing can be

achieved by appropriate traÆc grooming.

5 Concluding Remarks

We have considered the traÆc grooming problem in WDM star and tree topologies with the
objective of minimizing the amount of network-wide electronic routing. We showed that we
can eliminate the wavelength assignment subproblem and concentrate on simply �nding good
feasible topologies. We have obtained lower and upper bounds on the objective function for
both star and tree networks, and we have presented a set of heuristics that perform well across
a wide range of traÆc patterns and loads. We are currently investigating the application of
these results to the traÆc grooming problem in general mesh topologies.
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