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Abstract— We consider a hierarchical approach for traffic  traffic not originating/terminating locally. At the second
grooming in large multiwvavelength networks of a general |evel of the hierarchy, the first-level hubs form another
topology. Inspired by similar concepts in the airline industry,  ¢ster for grooming and routing inter-cluster traffic. Fhi

we decompose the network into clusters, and select a hi hical hi it labl di licabl
hub node in each cluster to groom traffic originating and ~ €rarcnical approach is quite scalable and IS applicable

terminating locally. Clustering and hierarchical grooming  t0 both the static and dynamic grooming contexts.
enables us to cope with large network sizes and facilitates the ~ One important yet challenging issue in hierarchical
control and management of traffic and network resources.  grooming is the selection of clusters and hub nodes. In
Yet Qetermlnlng the size and. composition of c!usters SO @S  ihis paper, we develop a new parameterized clustering
to yield good grooming solutions is a challenging task. We lqorith - f ffi . The alaorith
identify the grooming-specific factors affecting the selection fﬂ"gom_ m appropriate for traffic groommg. ea go_rlt m
of clusters, and we develop a parameterized clustering IS flexible and allows the network deS|gner to achieve a
algorithm that can achieve a desired tradeoff among various  desired balance among a number of conflicting goals.
goals. Following the introduction, we describe the hierarchical
grooming approach in Section Il. In Section Il we
|. INTRODUCTION present our clustering algorithm for hierarchical groognin
Ongoing advances in optical network and commu-n general topologies. We present numerical results in

nication technologies continue to expand the capacitf‘ecnon IV, and we conclude the paper in Section V.

of individual wavelengths and increase the availability

of wavelength channels for direct optical connections.|l. HIERARCHICAL GROOMING IN MESHNETWORKS
Traffic grooming, the area of research concerned with We consider a network of general topology wifki
terzlf?'fn; :?dmCﬁst;zger;?/i;{agffgthg; Zlﬁé\;vivflzgg;%odes. Physical links are bidirectional, and supgaft
im :thar\:t fieIdu OI? stug in rev(;lent ,ears Earl gWork on wavelengths per direction. The capaaityof each wave-
tra?fic grooming focuseyd on the rin)g] topblogyyreflecting length channel is an integer multiple of a basic transmis-

: ) A ion unit (e.g. - is also known hgroomin

the technological push in response to the industry’s efforf on unit (e.g,, OC-3)C” is also known as thgrooming

. actor. The demands placed on the network are provided
to upgrade deployed SONET infrastructure to WDMinatraﬁic demand matrixt’ — [t(-)], where integet(*)

Egcggglrggi I\r/lc?c:;i;eC?snstgésS?r:/er::tlwsot?kdslev?/itna;e slﬁg?%enotes the amount of (forecast) long-term traffic to be
9 9 9 arried from nodes to noded.

topology. The rea.d.er 'S referred o [8] foracor'nprehen.swe The objective of the traffic grooming problem is to
survey and classification of research on traffic grooming,

Nevertheless, most studies regard the network as a ﬂanflgure the network (i.e., determine the lightpaths to

. ) . e set up) to carry the entire traffic matfix while min-
entity for the purposes of lightpath routing, wavelength. .~ . .

. . k imizing the total number of electronic ports required at
assignment, and traffic grooming. In general, such ap;

T the network nodes. Since each lightpath requires exactly
proaches do not scale well to networks of realistic size fo :
e o . ._two electronic ports (one at the node at each end of the
two reasons: first, the running-time complexity of traffic

grooming algorithms increases rapidly with the size 0fllghtpath), this objective is equivalent to minimizing the

the network: and second, the operation, management, ar%lmber of lightpaths in the resulting logical topology. For

. . —a more formal definition of the problem and a general-
control of multigranular networks becomes a challengin : : . .
. . . urpose integer linear programming (ILP) formulation,
issue in large, unstructured topologies.

We have recently proposed a scalable hierarchicatr'e reader is referred to [8]. The traffic grooming problem

, . . In general topology networks is known to be NP-hard,
framework for traffic grooming that can be applied to net-_. . ; : .
. . . . ; since it contains as a subproblem the lightpath routing and
works of practical size covering a national or internationa

geographical area [3]. Our model borrows ideas from th wavelength assignment (RWA) problem which is itself

. - e P-hard [5]. Consequently, for WDM networks with more
hub-and-spoke paradigm used within the airline industry, L -
) " . than a few nodes, it is important to develop heuristic
The network is partitioned into clusters, and one node . : .
e . algorithms which are scalable and can be used to obtain
within each cluster is selected as tieb Non-hub nodes

route all their traffic to the hub, where it is groomed beforeprgljflz agrggv(?/osrilli‘g(rmriel?afcﬂ?i:r;r?rgﬁt::mer.oomin was
it is forwarded to the destination cluster; as a result, the 9 9

hub is the only node in a cluster responsible for groominql:?géresy bt%(:haeirlri]rl::-?}ncidlgg S_anng?dfpr;r;giL Isawlfreg:g

This work was supported by NSF grant ANI-0322107. network is partitioned into a number of clusters, each



consisting of a contiguous subset of nodes. We view each
cluster as avirtual star, and we designate one node as the
hubof the cluster. We refer to each cluster asréual star
because, even though the physical topology of the cluster
may take any form (and in fact may be quite different
than aphysical startopology), the hub is the only node
responsible for grooming intra- and inter-cluster traffic
Consequently, hub nodes are expected to be provisioned
with more resources (e.g., larger number of electronic
ports and higher switching capacity for grooming traffic)
than non-hub nodes. Returning to the airline analogy,
a hub node is similar in function to airports that serve
as major hubs; these airports are typically larger than (b) Second-level cluster consisting of first-level hubs, and hub nod
non-hub airports, in terms of both the number of gates
(“electronic ports”) and physical space (for “switching”
passengers between gates).

Our hierarchical framework consists of three phases:

1) Clustering of network nodes. In this phase, the
network is partitioned intom clusters and one:,
node in each cluster is designated as the hub. The,
clustering phase is crucial to the quality of th/ef/*
grooming solution. !
Hierarchical logical topology design and traffic |
routing. The outcome of this phase is a setof
lightpaths for carrying the traffic demand matrix *._
T, and a routing of individual traffic components
ts?) over these lightpaths. This phase is further

2)

\
\
\

subdivided into three parts:
a) setup of direct lightpaths for large traffic de-
mands;
b) intra-cluster traffic grooming; and

(a) First-level clusters

Fig. 1. (a) A 32-node WDM network partitioned into eight fitetel
clustersBy, - -+, Bg, and (b) the second level clusté consisting of
the eight first-level hubs and node 13 serving as its hub

c) inter-cluster traffic grooming.
Lightpath routing and wavelength assignment

(RWA). The goal of the RWA phase is to route the completely decomposable (NCD) matrix into blocks, so

lightpaths infz over the physical topology, and color that the weighted arcs between blocks have values not

them using the minimum number of wavelengths. exceeding a threshold, was introduced in [6]. Other work
For a detailed description of each phase, refer to [3]has focused on the physical topology only. Typically, the
Figure 1 illustrates the partitioning of a 32-node networkgoal is to partition the nodes into contiguous clusters
into eight first-level clusters, and the second level clustecontaining roughly equal numbers of nodes, and at the
consisting of the eight first-level hubs. same time minimize the overall cut size. An example is

the work on multi-objective graph partitioning [12], which
[1l. CLUSTERING FORHIERARCHICAL GROOMING is implemented in the METIS package.

Clustering is a function that arises frequently in prob- Another family of clustering problems concerned
lems related to network design and organization [11]with the physical topology includes thkK-Center, K-
Clustering algorithms are classified as eith@nimum cut  Clustering, K-MediarandFacility Locationproblems [2].
or spanning treedepending on the underlying methodol- Unlike the applications targeted by METIS, they do not
ogy. In our case, the goal is to find a clustering that willrequire clusters to be of equal size. Of all the variants, the
minimize the number of lightpathafter applying the hi- K-Centerproblem is of most interest to us. The goal of the
erarchical grooming (logical design) approach, a fact thakK-Centerproblem is to find a se$' of K nodes (centers)
adds significant complexity to the problem. Specifically,in the network, so as to minimize the maximum distance
the input to our problem consists of a traffic demandfrom any network node to the nearest center. Thus, the set
matrix and several constraints, in addition to the physicall' implicitly defines K clusters with corresponding hub
network topology; furthermore, unlike typical objective nodes inS. A solution to theK-Centerproblem may be
functions considered in the literature (e.g., the physicaliseful for hierarchical traffic grooming since it is likely t
cut size or the amount of inter-cluster traffic), ours cannotead to short lightpaths within a cluster, thus lowering the
be easily expressed as a function of the resulting clustersiavelength requirements. TH&Center problem is NP-
Therefore, most of the existing clustering techniques ar€omplete, and the best approximation ratio that can be
not directly applicable to the problem at hand. obtained in polynomial time is 2 [10]. We implemented

Some clustering studies only consider the traffic patterthe 2-approximation algorithm in [10] fdk-Center and
between nodes. An algorithm that can group a nearlyve compare it to our own clustering method in Section V.
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Some studies have explored clustering techniques itbo small, in order to keep the wavelength requirements
the context of traffic grooming: a hierarchical designlow.
for interconnecting SONET rings was proposed in [9], Another important consideration arises in physical
and in [7], the “blocking island” paradigm is used to topologies for which there exists a critical small cut set
abstract network resources and find groups of bandwidtthat partitions the network into two parts. In such a
hierarchies for a restricted version of traffic grooming.topology, all traffic between the two sides of the bisection
Our work is more comprehensive and it is applicable towill have to go through the cut. In this case, creating
many variants of the grooming problem. clusters that consist of nodes on different sides of the cut

We now describe a clustering algorithm tailored tomay be undesirable, because it may generate unnecessary
our hierarchical grooming framework. The objective oftraffic that goes back and forth through the cut. Consider
the algorithm is twofold: to partition the network into a cluster with nodes, j, on one side of the bisection,
some numbern of clusters, denoted,---, B,,, and to and the hubh on the other. Due to the nature of the
select one node in each cluster to serve as the hub whehgerarchical grooming approach, traffic betweeand j
grooming of traffic is performed. Next, we discuss themay need to be sent to the hub first, creating additional
tradeoffs involved in selecting the clusters, which set thdraffic across the cut links, with a corresponding increase
design principles for our clustering algorithm. in the number of required wavelengths. This additional
traffic can be eliminated by forcing nodes on different
sides of the bisection to be in different clusters. We have
employed a pre-cutting technique that can be useful in

To obtain a good clustering, the number of clustersgych situations.
their composition, and the corresponding hubs must be The physical shape of each cluster may also affect the
selected in a way that helps achieve our goal of minimizwavelength requirements. In particular, it is important to
ing the number of lightpaths and wavelengths requirecyyoid the creation of clusters whose topology resembles
to carry the traffic demands. Therefore, the selection ofhat of a path, since in such topologies the links near
clusters and hubs is a complex and difficult task, as ithe hub can become congested. Since we usétaal
depends on both the physical topology of the networkstar approach for logical topology design within each

and the traffic matrixt". To illustrate this point, consider cjuster, topologies with relatively short diameter are enor
the tradeoffs involved in determining the numberof  attractive in terms of RWA.

clusters. Ifm is small, the amount of inter-cluster traffic
will likely be large. Hence, then hubs may become ) )
bottlenecks, resulting in a large number of electronicport B: The MeshClustering Algorithm
at each hub and possibly a large number of wavelengths Figure 2 provides a pseudocode description of our
(since many lightpaths may have to be carried over thdleshClustering algorithm which we use to partition a
fixed number of links to/from each hub). network of general topology in order to apply our hi-
On the other hand, a large value farimplies a small  erarchical traffic grooming framework. The algorithm in-
number of nodes within each cluster. In this case, theludes several user-defined parameters that can be used to
amount of intra-cluster traffic will be small, resulting in control the size and composition of clusters, either diyect
inefficient grooming (i.e., a large number of lightpaths);or indirectly. ParameterdlinCS and MaxCS represent
similarly, at the second-level cluste)(m?) lightpaths the minimum and maximum cluster size, respectively.
will have to be set up to carry small amounts of inter-Our algorithm treats these parameters asiratication
cluster traffic. Therefore, the network designer must selemf the desirable range of cluster sizes, rather than as hard
the number and size of clusters to strike a balance betwedhresholds that cannot be violated.
capacity utilization and number of lightpaths for both The parameterA (0.5 < A < 0.8, default value
intra- and inter-cluster traffic. A = 0.8) is used to test whether there is sufficient
Now consider the composition of each cluster. If thecapacity at the hub node, as well as the edges connecting
average traffic demand between nodes within a clustehe cluster to the rest of the network, to groom/carry the
is higher than the average inter-cluster demand, thergaffic demands. Specifically, we require that the inter-
will tend to be fewer inter-cluster lightpaths, which are cluster traffic originating from or terminating at a given
typically longer than local lightpaths. Therefore, it is cluster do not exceed a fractidaof the hub capacity (this
desirable to cluster together nodes with “denser” traffids the HUBTEST in Step 9 of the algorithm); similarly,
between each other: doing so reduces the number dfis intra-cluster traffic must not exceed a fractidnof
longer lightpaths, alleviates hub congestion, and pravidethe capacity of the links connecting the cluster to the
more flexibility to the RWA algorithm (since long light- rest of the network (the CUTTEST in Step 10 of the
paths are more likely to collide during the RWA phase). algorithm). The algorithm will consider a node to add
On the physical topology side, we also need to consideto a cluster only if doing so will not violate these two
the cut links between clusters. Each cluster has a numbepnstraints.
of fibers that link to nodes outside the cluster, and all The parameteb controls the ratio of the diameter of
traffic between a node outside the cluster and one withim cluster to the number of nodes it contains. In order
must traverse these cut links. Since the cut links musto avoid cluster topologies that resemble long paths, we
have sufficient capacity to carry the inter-cluster trafic, require that0 < § < 0.75. We used the valué = 0.75;
is important to select clusters so that their cut size is nothis value corresponds to a 4-node path, restricting the

A. Important Considerations



A Clustering Algorithm for Mesh Networks HUBTEST and CUTTEST; if not, node is removed for

Input: A mesh network with a seV’ of |V| = N nodes, qngigeration for inclusion into clustdd (Step 17). For
capacity C' for each wavelength, and reduced traffic matrix .
T, — [t’r‘sd)}. all nodesq that pass both tests, we compute the diameter-

User-defined parameters: MinC'S, MaxzC'S for the desired ~t0-nodes ratidj, and intra-to-inter-cluster traffic ratig,,
minimum and maximum cluster size, respectively, a thresholdassuming thay is added to clusteB (Steps 11-16). Let

0.5 < A < 0.8, a cluster diameteto-nodes ratid) < § < 0.75, ¢, be a node that passes both tests and has the largest
and an intra-to-inter-cluster traffic ratio8 < p < 1.25. p, value among the candidates; if there are multiple such

Output: A partitioning of the node seV into some number .
m of clusters,Bs, ..., B, and the selection of node; as the nodes, we select the one with the small&,stvalue. We

hub of clusterB;, such that the size of each cluster is roughly includego to clusterB (Steps 21-23), and the process is
betweenMinC'S and MaxzCS and the clustering will lower repeated as long as the size Bfis less tharMaxCS

the lightpath and wavelength requirements of the subsequent Once all nodes have been assigned to clusters, it is

hierarchical logical topology design and RWA algorithms. possible for one or more of the clusters to have fewer
ProcedureMeshClustering thanMinCSnodes. In this case, at Step 26, the algorithm
begin removes these clusters and includes their nodes into
1. while vV & ¢ do . ) - _ adjacent clusters. As a result, at the end of the algorithm
2. v < node inV with maximum remaining capacity .
3 B —{v} I new clusterB with hubov some clusters may contalq more thulaxC_Snodes.
4. Ve~V - {v} The asymptotic complexity of the algorithm a3(N*).
5. while V # ¢ and|B| < MaxzCS do // grow clusterB However, this bound is quite loose; in practice, we have
g- fQ — Sﬁt 0; nodeg é/ adjacent to nodes i found that the algorithm takes only a few seconds for the
. oreach nodeq € Q do ) _li (dar i ;

8 B — BU{q} I assumey is included inB3 128-node, 321-link network we consider in Section IV.
9. HUBTEST: does traffic betweeR’, B’ occupy

more thanA of the remaining hub capacity? IV. NUMERICAL RESULTS
10. CUTTEST: does traffic betwedB’, B’ occupy . . )

more thanA of the remaining cut link capacity? N this section, we present experimental results to
11. if ¢ passes both testhen demonstrate the performance of our clustering and hi-
12. r « total traffic betweery and nodes i3 erarchical grooming algorithms. The traffic matfix =
13. y < total traffic betweery and nodes inB’  [¢(s9)] of each problem instance we consider is generated
14. pq < x/y lintra- to inter-cluster traffic ratio j,, grawing N(N — 1) random numbers (rounded to
15. d « diameter of induced subgrapB’ . . S .
16. 5, —d/|B'| Il diameter-to-nodes ratio the nearest integer) from a Gagsgan distribution with a
17. elseQ — Q — {q} given meant and standard deviatioa that depend on
18. end for the traffic pattern; the details can be found in [4]. We
19. if @ = ¢ then break // cannot grow cluste3 consider a 128-node, 321-link network which corresponds
20. else _ to the worldwide backbone operated by a large service
21. qo <— nodee Q with largestp, and smallesb, N . . .
22 B— BU{q} /I grow clusterB to includeqo provider; we obtained the topol_ogy information frqm data
23. Ve~V —{q} documented on CAIDAs web site [1]. We emphasize that
24.  end while // continue until B cannot grow further the size of this topology is about an order of magnitude
25. end while larger than the typical topology considered in previous

26. Combine clusters of size MinC'S with adjacent clusters

ond grooming studies, a fact that demonstrates the scalability

of our hierarchical grooming approach.
For a given network topology and traffic pattern, we
Fig. 2. Clustering algorithm for mesh networks generate thirty problem instances and we compare our

MeshClustering algorithm to th€-Centeralgorithm [10].

We consider two performance metrics in our study: the
longest path within a cluster to no more than three linksnormalized lightpath countind the normalized wave-
Finally, the parametep,0.8 < p < 1.25, specifies the length count The former is the ratio of the number of
acceptable range for the ratio of intra- to inter-clustedightpaths required for hierarchical traffic grooming, whe
traffic for a given cluster. Since it is desirable to clusterclustering is performed by one of the two algorithms
together nodes that exchange a substantial amount above, to the lightpath lower bound, while the latter is
traffic among themselves relative to traffic they exchangehe ratio of the number of wavelengths required to the
with the rest of the network, we lgt= 1.25. wavelength lower bound; the derivation of the bounds is

The MeshClustering algorithm in Figure 2 generategresented in [4].

one cluster during each iteration between Steps 1 and 25. Figures 3 and 4 plot the normalized lightpath and wave-
Initially, in Steps 2-4, the hub of a new clust& is se- length count, respectively, for thirty instances genetate
lected as the node with the maximum remaining capacityccording to the random traffic pattern; Figures 5 and 6
among those not yet assigned to a cluster. We grow thehow similar plots but for instances generated according
cluster by adding one node during each iteration betweeto the rising pattern. For thK-Centeralgorithm, we let
Steps 5 and 24. At each iteration, the getf candidate the numberK of clusters be either 9 or 10, and we se-
nodes for inclusion inB consists of all nodes, not yet lected the parameters of the MeshClustering algorithm so
assigned to another cluster, which are adjacent to nodékat it also produces either 9 or 10 clusters. Our clustering
in B. For each nodeg € ), we check whether including algorithm slightly outperform#-Centerin terms of the

g in B would result in a cluster that passes both thenumber of lightpaths, and both algorithms are relatively
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