
Clustering Methods for Hierarchical Traffic
Grooming in Large Scale Mesh WDM Networks
Bensong Chen, George N. Rouskas, Rudra Dutta Department of Computer Science, North Carolina State

University, Raleigh, NC 27695-7534

Abstract— We consider a hierarchical approach for traffic
grooming in large multiwavelength networks of a general
topology. Inspired by similar concepts in the airline industry,
we decompose the network into clusters, and select a
hub node in each cluster to groom traffic originating and
terminating locally. Clustering and hierarchical grooming
enables us to cope with large network sizes and facilitates the
control and management of traffic and network resources.
Yet determining the size and composition of clusters so as
to yield good grooming solutions is a challenging task. We
identify the grooming-specific factors affecting the selection
of clusters, and we develop a parameterized clustering
algorithm that can achieve a desired tradeoff among various
goals.

I. I NTRODUCTION

Ongoing advances in optical network and commu-
nication technologies continue to expand the capacity
of individual wavelengths and increase the availability
of wavelength channels for direct optical connections.
Traffic grooming, the area of research concerned with
efficient and cost-effective transport of sub-wavelength
traffic over multigranular networks, has emerged as an
important field of study in recent years. Early work on
traffic grooming focused on the ring topology, reflecting
the technological push in response to the industry’s effort
to upgrade deployed SONET infrastructure to WDM
technology. More recently, several studies have begun
to address grooming issues in networks with a general
topology. The reader is referred to [8] for a comprehensive
survey and classification of research on traffic grooming.
Nevertheless, most studies regard the network as a flat
entity for the purposes of lightpath routing, wavelength
assignment, and traffic grooming. In general, such ap-
proaches do not scale well to networks of realistic size for
two reasons: first, the running-time complexity of traffic
grooming algorithms increases rapidly with the size of
the network; and second, the operation, management, and
control of multigranular networks becomes a challenging
issue in large, unstructured topologies.

We have recently proposed a scalable hierarchical
framework for traffic grooming that can be applied to net-
works of practical size covering a national or international
geographical area [3]. Our model borrows ideas from the
hub-and-spoke paradigm used within the airline industry.
The network is partitioned into clusters, and one node
within each cluster is selected as thehub. Non-hub nodes
route all their traffic to the hub, where it is groomed before
it is forwarded to the destination cluster; as a result, the
hub is the only node in a cluster responsible for grooming
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traffic not originating/terminating locally. At the second
level of the hierarchy, the first-level hubs form another
cluster for grooming and routing inter-cluster traffic. This
hierarchical approach is quite scalable and is applicable
to both the static and dynamic grooming contexts.

One important yet challenging issue in hierarchical
grooming is the selection of clusters and hub nodes. In
this paper, we develop a new parameterized clustering
algorithm appropriate for traffic grooming. The algorithm
is flexible and allows the network designer to achieve a
desired balance among a number of conflicting goals.

Following the introduction, we describe the hierarchical
grooming approach in Section II. In Section III we
present our clustering algorithm for hierarchical grooming
in general topologies. We present numerical results in
Section IV, and we conclude the paper in Section V.

II. H IERARCHICAL GROOMING IN MESH NETWORKS

We consider a network of general topology withN
nodes. Physical links are bidirectional, and supportW

wavelengths per direction. The capacityC of each wave-
length channel is an integer multiple of a basic transmis-
sion unit (e.g., OC-3);C is also known as thegrooming
factor. The demands placed on the network are provided
in a traffic demand matrix,T = [t(sd)], where integert(sd)

denotes the amount of (forecast) long-term traffic to be
carried from nodes to noded.

The objective of the traffic grooming problem is to
configure the network (i.e., determine the lightpaths to
be set up) to carry the entire traffic matrixT while min-
imizing the total number of electronic ports required at
the network nodes. Since each lightpath requires exactly
two electronic ports (one at the node at each end of the
lightpath), this objective is equivalent to minimizing the
number of lightpaths in the resulting logical topology. For
a more formal definition of the problem and a general-
purpose integer linear programming (ILP) formulation,
the reader is referred to [8]. The traffic grooming problem
in general topology networks is known to be NP-hard,
since it contains as a subproblem the lightpath routing and
wavelength assignment (RWA) problem which is itself
NP-hard [5]. Consequently, for WDM networks with more
than a few nodes, it is important to develop heuristic
algorithms which are scalable and can be used to obtain
provably good solutions in polynomial time.

Our framework for hierarchical traffic grooming was
inspired by the hub-and-spoke paradigm that is widely
used by the airline industry. In our approach, a large
network is partitioned into a number of clusters, each



consisting of a contiguous subset of nodes. We view each
cluster as avirtual star, and we designate one node as the
hubof the cluster. We refer to each cluster as avirtual star
because, even though the physical topology of the cluster
may take any form (and in fact may be quite different
than aphysical startopology), the hub is the only node
responsible for grooming intra- and inter-cluster traffic.
Consequently, hub nodes are expected to be provisioned
with more resources (e.g., larger number of electronic
ports and higher switching capacity for grooming traffic)
than non-hub nodes. Returning to the airline analogy,
a hub node is similar in function to airports that serve
as major hubs; these airports are typically larger than
non-hub airports, in terms of both the number of gates
(“electronic ports”) and physical space (for “switching”
passengers between gates).

Our hierarchical framework consists of three phases:
1) Clustering of network nodes. In this phase, the

network is partitioned intom clusters and one
node in each cluster is designated as the hub. The
clustering phase is crucial to the quality of the
grooming solution.

2) Hierarchical logical topology design and traffic
routing. The outcome of this phase is a setR of
lightpaths for carrying the traffic demand matrix
T , and a routing of individual traffic components
t(sd) over these lightpaths. This phase is further
subdivided into three parts:

a) setup of direct lightpaths for large traffic de-
mands;

b) intra-cluster traffic grooming; and
c) inter-cluster traffic grooming.

3) Lightpath routing and wavelength assignment
(RWA). The goal of the RWA phase is to route the
lightpaths inR over the physical topology, and color
them using the minimum number of wavelengths.

For a detailed description of each phase, refer to [3].
Figure 1 illustrates the partitioning of a 32-node network
into eight first-level clusters, and the second level cluster
consisting of the eight first-level hubs.

III. C LUSTERING FORHIERARCHICAL GROOMING

Clustering is a function that arises frequently in prob-
lems related to network design and organization [11].
Clustering algorithms are classified as eitherminimum cut
or spanning tree, depending on the underlying methodol-
ogy. In our case, the goal is to find a clustering that will
minimize the number of lightpathsafter applying the hi-
erarchical grooming (logical design) approach, a fact that
adds significant complexity to the problem. Specifically,
the input to our problem consists of a traffic demand
matrix and several constraints, in addition to the physical
network topology; furthermore, unlike typical objective
functions considered in the literature (e.g., the physical
cut size or the amount of inter-cluster traffic), ours cannot
be easily expressed as a function of the resulting clusters.
Therefore, most of the existing clustering techniques are
not directly applicable to the problem at hand.

Some clustering studies only consider the traffic pattern
between nodes. An algorithm that can group a nearly
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Fig. 1. (a) A 32-node WDM network partitioned into eight first-level
clustersB1, · · · , B8, and (b) the second level clusterB consisting of
the eight first-level hubs and node 13 serving as its hub

completely decomposable (NCD) matrix into blocks, so
that the weighted arcs between blocks have values not
exceeding a threshold, was introduced in [6]. Other work
has focused on the physical topology only. Typically, the
goal is to partition the nodes into contiguous clusters
containing roughly equal numbers of nodes, and at the
same time minimize the overall cut size. An example is
the work on multi-objective graph partitioning [12], which
is implemented in the METIS package.

Another family of clustering problems concerned
with the physical topology includes theK-Center, K-
Clustering, K-MedianandFacility Locationproblems [2].
Unlike the applications targeted by METIS, they do not
require clusters to be of equal size. Of all the variants, the
K-Centerproblem is of most interest to us. The goal of the
K-Centerproblem is to find a setS of K nodes (centers)
in the network, so as to minimize the maximum distance
from any network node to the nearest center. Thus, the set
S implicitly definesK clusters with corresponding hub
nodes inS. A solution to theK-Centerproblem may be
useful for hierarchical traffic grooming since it is likely to
lead to short lightpaths within a cluster, thus lowering the
wavelength requirements. TheK-Center problem is NP-
Complete, and the best approximation ratio that can be
obtained in polynomial time is 2 [10]. We implemented
the 2-approximation algorithm in [10] forK-Center, and
we compare it to our own clustering method in Section IV.



Some studies have explored clustering techniques in
the context of traffic grooming: a hierarchical design
for interconnecting SONET rings was proposed in [9],
and in [7], the “blocking island” paradigm is used to
abstract network resources and find groups of bandwidth
hierarchies for a restricted version of traffic grooming.
Our work is more comprehensive and it is applicable to
many variants of the grooming problem.

We now describe a clustering algorithm tailored to
our hierarchical grooming framework. The objective of
the algorithm is twofold: to partition the network into
some numberm of clusters, denotedB1, · · · , Bm, and to
select one node in each cluster to serve as the hub where
grooming of traffic is performed. Next, we discuss the
tradeoffs involved in selecting the clusters, which set the
design principles for our clustering algorithm.

A. Important Considerations

To obtain a good clustering, the number of clusters,
their composition, and the corresponding hubs must be
selected in a way that helps achieve our goal of minimiz-
ing the number of lightpaths and wavelengths required
to carry the traffic demands. Therefore, the selection of
clusters and hubs is a complex and difficult task, as it
depends on both the physical topology of the network
and the traffic matrixT . To illustrate this point, consider
the tradeoffs involved in determining the numberm of
clusters. Ifm is small, the amount of inter-cluster traffic
will likely be large. Hence, them hubs may become
bottlenecks, resulting in a large number of electronic ports
at each hub and possibly a large number of wavelengths
(since many lightpaths may have to be carried over the
fixed number of links to/from each hub).

On the other hand, a large value form implies a small
number of nodes within each cluster. In this case, the
amount of intra-cluster traffic will be small, resulting in
inefficient grooming (i.e., a large number of lightpaths);
similarly, at the second-level cluster,O(m2) lightpaths
will have to be set up to carry small amounts of inter-
cluster traffic. Therefore, the network designer must select
the number and size of clusters to strike a balance between
capacity utilization and number of lightpaths for both
intra- and inter-cluster traffic.

Now consider the composition of each cluster. If the
average traffic demand between nodes within a cluster
is higher than the average inter-cluster demand, there
will tend to be fewer inter-cluster lightpaths, which are
typically longer than local lightpaths. Therefore, it is
desirable to cluster together nodes with “denser” traffic
between each other: doing so reduces the number of
longer lightpaths, alleviates hub congestion, and provides
more flexibility to the RWA algorithm (since long light-
paths are more likely to collide during the RWA phase).

On the physical topology side, we also need to consider
the cut links between clusters. Each cluster has a number
of fibers that link to nodes outside the cluster, and all
traffic between a node outside the cluster and one within
must traverse these cut links. Since the cut links must
have sufficient capacity to carry the inter-cluster traffic,it
is important to select clusters so that their cut size is not

too small, in order to keep the wavelength requirements
low.

Another important consideration arises in physical
topologies for which there exists a critical small cut set
that partitions the network into two parts. In such a
topology, all traffic between the two sides of the bisection
will have to go through the cut. In this case, creating
clusters that consist of nodes on different sides of the cut
may be undesirable, because it may generate unnecessary
traffic that goes back and forth through the cut. Consider
a cluster with nodesi, j, on one side of the bisection,
and the hubh on the other. Due to the nature of the
hierarchical grooming approach, traffic betweeni and j

may need to be sent to the hub first, creating additional
traffic across the cut links, with a corresponding increase
in the number of required wavelengths. This additional
traffic can be eliminated by forcing nodes on different
sides of the bisection to be in different clusters. We have
employed a pre-cutting technique that can be useful in
such situations.

The physical shape of each cluster may also affect the
wavelength requirements. In particular, it is important to
avoid the creation of clusters whose topology resembles
that of a path, since in such topologies the links near
the hub can become congested. Since we use avirtual
star approach for logical topology design within each
cluster, topologies with relatively short diameter are more
attractive in terms of RWA.

B. The MeshClustering Algorithm

Figure 2 provides a pseudocode description of our
MeshClustering algorithm which we use to partition a
network of general topology in order to apply our hi-
erarchical traffic grooming framework. The algorithm in-
cludes several user-defined parameters that can be used to
control the size and composition of clusters, either directly
or indirectly. ParametersMinCS and MaxCS represent
the minimum and maximum cluster size, respectively.
Our algorithm treats these parameters as anindication
of the desirable range of cluster sizes, rather than as hard
thresholds that cannot be violated.

The parameter∆ (0.5 ≤ ∆ ≤ 0.8, default value
∆ = 0.8) is used to test whether there is sufficient
capacity at the hub node, as well as the edges connecting
the cluster to the rest of the network, to groom/carry the
traffic demands. Specifically, we require that the inter-
cluster traffic originating from or terminating at a given
cluster do not exceed a fraction∆ of the hub capacity (this
is the HUBTEST in Step 9 of the algorithm); similarly,
this intra-cluster traffic must not exceed a fraction∆ of
the capacity of the links connecting the cluster to the
rest of the network (the CUTTEST in Step 10 of the
algorithm). The algorithm will consider a node to add
to a cluster only if doing so will not violate these two
constraints.

The parameterδ controls the ratio of the diameter of
a cluster to the number of nodes it contains. In order
to avoid cluster topologies that resemble long paths, we
require that0 < δ ≤ 0.75. We used the valueδ = 0.75;
this value corresponds to a 4-node path, restricting the



A Clustering Algorithm for Mesh Networks
Input: A mesh network with a setV of |V | = N nodes,
capacity C for each wavelength, and reduced traffic matrix
Tr = [t

(sd)
r ].

User-defined parameters:MinCS, MaxCS for the desired
minimum and maximum cluster size, respectively, a threshold
0.5 ≤ ∆ ≤ 0.8, a cluster diameter-to-nodes ratio0 < δ ≤ 0.75,
and an intra-to-inter-cluster traffic ratio0.8 ≤ ρ ≤ 1.25.
Output: A partitioning of the node setV into some number
m of clusters,B1, . . . , Bm, and the selection of nodehi as the
hub of clusterBi, such that the size of each cluster is roughly
betweenMinCS and MaxCS and the clustering will lower
the lightpath and wavelength requirements of the subsequent
hierarchical logical topology design and RWA algorithms.

ProcedureMeshClustering
begin
1. while V 6= φ do
2. v ← node inV with maximum remaining capacity
3. B ← {v} // new clusterB with hub v
4. V ← V − {v}
5. while V 6= φ and |B| < MaxCS do // grow clusterB
6. Q← set of nodes∈ V adjacent to nodes inB
7. foreach nodeq ∈ Q do
8. B′ ← B ∪ {q} // assumeq is included inB
9. HUBTEST: does traffic betweenB′, B′ occupy

more than∆ of the remaining hub capacity?
10. CUTTEST: does traffic betweenB′, B′ occupy

more than∆ of the remaining cut link capacity?
11. if q passes both teststhen
12. x← total traffic betweenq and nodes inB
13. y ← total traffic betweenq and nodes inB′

14. ρq ← x/y //intra- to inter-cluster traffic ratio
15. d← diameter of induced subgraphB′

16. δq ← d/|B′| // diameter-to-nodes ratio
17. elseQ← Q− {q}
18. end for
19. if Q = φ then break // cannot grow clusterB
20. else
21. q0 ← node∈ Q with largestρq and smallestδq

22. B ← B ∪ {q0} // grow clusterB to includeq0

23. V ← V − {q0}
24. end while // continue untilB cannot grow further
25. end while
26. Combine clusters of size< MinCS with adjacent clusters
end

Fig. 2. Clustering algorithm for mesh networks

longest path within a cluster to no more than three links.
Finally, the parameterρ, 0.8 ≤ ρ ≤ 1.25, specifies the
acceptable range for the ratio of intra- to inter-cluster
traffic for a given cluster. Since it is desirable to cluster
together nodes that exchange a substantial amount of
traffic among themselves relative to traffic they exchange
with the rest of the network, we letρ = 1.25.

The MeshClustering algorithm in Figure 2 generates
one cluster during each iteration between Steps 1 and 25.
Initially, in Steps 2-4, the hub of a new clusterB is se-
lected as the node with the maximum remaining capacity
among those not yet assigned to a cluster. We grow the
cluster by adding one node during each iteration between
Steps 5 and 24. At each iteration, the setQ of candidate
nodes for inclusion inB consists of all nodes, not yet
assigned to another cluster, which are adjacent to nodes
in B. For each nodeq ∈ Q, we check whether including
q in B would result in a cluster that passes both the

HUBTEST and CUTTEST; if not, nodeq is removed for
consideration for inclusion into clusterB (Step 17). For
all nodesq that pass both tests, we compute the diameter-
to-nodes ratioδq and intra-to-inter-cluster traffic ratioρq,
assuming thatq is added to clusterB (Steps 11-16). Let
q0 be a node that passes both tests and has the largest
ρq value among the candidates; if there are multiple such
nodes, we select the one with the smallestδq value. We
includeq0 to clusterB (Steps 21-23), and the process is
repeated as long as the size ofB is less thanMaxCS.

Once all nodes have been assigned to clusters, it is
possible for one or more of the clusters to have fewer
thanMinCSnodes. In this case, at Step 26, the algorithm
removes these clusters and includes their nodes into
adjacent clusters. As a result, at the end of the algorithm
some clusters may contain more thanMaxCSnodes.

The asymptotic complexity of the algorithm isO(N4).
However, this bound is quite loose; in practice, we have
found that the algorithm takes only a few seconds for the
128-node, 321-link network we consider in Section IV.

IV. N UMERICAL RESULTS

In this section, we present experimental results to
demonstrate the performance of our clustering and hi-
erarchical grooming algorithms. The traffic matrixT =
[t(sd)] of each problem instance we consider is generated
by drawing N(N − 1) random numbers (rounded to
the nearest integer) from a Gaussian distribution with a
given meant and standard deviationσ that depend on
the traffic pattern; the details can be found in [4]. We
consider a 128-node, 321-link network which corresponds
to the worldwide backbone operated by a large service
provider; we obtained the topology information from data
documented on CAIDA’s web site [1]. We emphasize that
the size of this topology is about an order of magnitude
larger than the typical topology considered in previous
grooming studies, a fact that demonstrates the scalability
of our hierarchical grooming approach.

For a given network topology and traffic pattern, we
generate thirty problem instances and we compare our
MeshClustering algorithm to theK-Centeralgorithm [10].
We consider two performance metrics in our study: the
normalized lightpath countand the normalized wave-
length count. The former is the ratio of the number of
lightpaths required for hierarchical traffic grooming, when
clustering is performed by one of the two algorithms
above, to the lightpath lower bound, while the latter is
the ratio of the number of wavelengths required to the
wavelength lower bound; the derivation of the bounds is
presented in [4].

Figures 3 and 4 plot the normalized lightpath and wave-
length count, respectively, for thirty instances generated
according to the random traffic pattern; Figures 5 and 6
show similar plots but for instances generated according
to the rising pattern. For theK-Centeralgorithm, we let
the numberK of clusters be either 9 or 10, and we se-
lected the parameters of the MeshClustering algorithm so
that it also produces either 9 or 10 clusters. Our clustering
algorithm slightly outperformsK-Center in terms of the
number of lightpaths, and both algorithms are relatively
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Fig. 4. Wavelength comparison, random pattern, 128-node network

close to the (loose) lower bound. However, in terms of the
number of wavelengths, our algorithm produces results
that are within 5% of the lower bound, whereasK-Center
requires more than twice the number of wavelengths of
our algorithm. Similar results for other traffic patterns and
network topologies may be found in [4].

V. CONCLUDING REMARKS

We have presented a clustering algorithm for hierarchi-
cal traffic grooming that is flexible in balancing various
conflicting goals via user-defined parameters. Overall,
our experimental results demonstrate that hierarchical
grooming combined with specially designed clustering
techniques produce logical topologies that perform well
in terms of both lightpath and wavelength requirements.
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