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Abstract— Many network operators offer some type of tiered
service, in which users may select only from a small set of service
levels (tiers). In this work, we study the problem of designing a
tiered-service network that allocates bandwidth in multiples of a
basic bandwidth unit. Such a packet-switched network can enjoy
many of the benefits, in terms of control and management, of a
TDM network, but without the associated data plane rigidities.

I. INTRODUCTION

Many networks offer some type of tiered service, in which
users may select only from a small set of service tiers (levels).
The main motivation for such a service is to simplify a
wide range of core functions (including network manage-
ment and equipment configuration, traffic engineering, service
level agreements, billing, and customer support), enabling the
providers to scale their operations to millions of customers.
Currently, service tiers are either based on the bandwidth hier-
archy of the underlying network infrastructure (e.g., DS-1, DS-
3, OC-3, etc.), or are determined in some ad-hoc manner (e.g.,
the various ADSL tiers available through different providers).

The problem of bandwidth quantization, i.e., optimally
determining the set of service levels, was studied in [5] in
the context of ATM networks, and a heuristic based on simu-
lation annealing was presented. We have recently developed a
theoretical framework for reasoning about and tackling algo-
rithmically the problem of service tier selection by formulating
the general problem of traffic quantization as a directional p-
median problem [1], [3], [4], and we have developed efficient
algorithms for a number of important variants.

In this paper, we study a special version of the problem
in which all service tiers are multiples of a basic bandwidth
unit. A packet-switched network operating with such a set of
service levels would resemble a TDM network that allocates
bandwidth in multiples of a slot. Consequently, many robust
network management functions developed for telecommuni-
cation networks, including admission control, routing, traffic
engineering and grooming, etc., could be easily adapted for
the tiered-service packet-switched network. We emphasize that
this “TDM emulation” only concerns the control and manage-
ment functions, not the data plane operation of the network.
For example, while bandwidth is allocated in multiples of the
basic unit, flows are not limited to using a particular slot. Sim-
ilarly, unlike TDM networks where an unused slot is wasted,
excess bandwidth can be allocated to active flows by the
scheduling algorithm. Furthermore, the bandwidth unit is not
fixed or determined by hardware, as in a TDM network, but, it
is configurable and can be optimized for the characteristics of
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Fig. 1. User requests xi mapped to service tiers zj which are multiples of r

the carried traffic. In addition, the routers provide for free the
functionality of a time-slot interchange. Overall, using TDM
emulation, packet-switched networks (e.g., those employing
1 or 10 GE links) can enjoy many of the benefits, in terms
of control and management, of a TDM network, but without
the data plane rigidities of such a network. Furthermore, this
problem has important applications to next-generation SONET
networks in which it is possible to use virtual concatenation
to allocate bandwidth flexibly in any multiple of 64 Kbps [2].

In Section II we formulate the problem of service tier
selection, and present an exhaustive optimal algorithm. In
Section III we develop a suite of efficient algorithms to select
both the service levels and the bandwidth unit that are jointly
optimal. We present numerical results in Section IV, and we
conclude the paper in Section V.

II. SERVICE TIER OPTIMIZATION

We consider a packet-switched network with n users. Let xi

be the amount of bandwidth requested by user i. Let r denote
the unit bandwidth, i.e., the smallest quantity in which the
network allocates bandwidth. Without loss of generality, we
assume that quantities r and xi, i = 1, · · · , n, are expressed
as fractions of the maximum link capacity C in the network,
i.e., 0 < r, xi ≤ 1. The network offers p ≥ 1 levels (tiers) of
service; typically, p � n. The j-th level of service corresponds
to bandwidth zj = rkj , where kj is an integer and z1 < z2 <
. . . < zp ≤ 1. In such a tiered-service network, each user
i is mapped to service level zj such that zj−1 < xi ≤ zj .
The additional bandwidth zj − xi represents the performance
penalty associated with the tiered service.

Let X = {x1, . . . , xn} be a set of n points on the real line,
such that x1 ≤ x2 ≤ · · · ≤ xn, and define the density of X
to be ρX =

∑n
i=1 xi. A set of service tiers S = {z1, . . . , zp},

z1 < z2 < · · · < zp, 1 ≤ p ≤ n, is a feasible solution for X
if and only if xn ≤ zp. Associated with a feasible solution is
an implied mapping X → S, where xi → zj if and only if
zj−1 < xi ≤ zj . Figure 1 shows a sample mapping from a
set of X of 13 demand points onto a set S of 6 service tiers
which are multiples of some unit r.

Let nj denote the number of requests mapped to tier zj . We
define the service tier optimization (STO) problem as follows.
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Problem 2.1 (STO): Given a set X of n bandwidth re-
quests, x1 ≤ x2 ≤ · · · ≤ xn, and a constant B, find a real r
and a feasible set S of p service tiers, z1 < z2 < · · · < zp,
1 ≤ p ≤ n, so as to minimize the objective function:

Obj(S, r) =




p∑
j=1

(njzj) − ρX


 +

B

r
(1)

under the constraints: zj = rkj , kj : integer, j = 1, . . . , p.
The objective function above consists of two terms which

represent a tradeoff with respect to the selection of the
bandwidth unit r. The density ρX is the amount of bandwidth
requested, while

∑p
j=1(njzj) is the bandwidth assigned to the

users under the tiered service. Hence, the term in the brackets
in (1) is the amount of excess bandwidth needed by the tiered-
service network to accommodate the set X after mapping it
to the service tier set S. It is not difficult to see that the term
in brackets is minimized when r = 1

C , i.e., when bandwidth
is allocated at the finest possible granularity1: since service
tiers must be multiples of r, if bandwidth is allocated at a
granularity coarser than r = 1

C , the solution space for the
service tier set S = {zj} will be a proper subset of the solution
space when r = 1

C , yielding a suboptimal solution for the
excess bandwidth penalty expressed by the term in brackets.

On the other hand, the term B
r in the objective function (1),

where B is some constant related to the operation of the
system, prevents r from being very small. Specifically, the
term B

r is of practical importance as it captures the overhead
associated with making the unit r of bandwidth allocation
small. To illustrate, let us make the simplifying assumption
that all users request and receive the basic rate of rC bits/sec.
After serving a user, the system incurs some overhead due to
the bookkeeping operations, memory lookups, etc., required
before it can switch to serving another user. Let α denote the
amount of time required to switch between users, expressed as
the number of bits that could be transmitted during this time
at the given service rate. Therefore, the quantity α

rC represents
the amount of overhead operations relative to the unit rate. This
relative overhead, which increases as the unit of bandwidth
decreases, is similar in principle to the “cell tax” incurred in
carrying IP traffic over ATM networks due to the relatively
large fraction of header (i.e., overhead) bits to data bits. In the
objective function (1) we use the term B

r where B = cα
C and

c is a constant which ensures that the two terms in the right
hand side of (1) are expressed in the same units.

A. Optimal Solution to STO for Fixed r

As defined, the objective of STO is to find jointly optimal
values for the basic bandwidth unit r (a real number) and the
p service tiers. However, let us consider for a moment the
special case where the value of r is fixed and not subject to
optimization; as we shall see shortly, the algorithm for this
problem is useful in tackling the general one. In this case, the
term B

r in (1) is constant and does not affect the minimization.

1Recall that r is expressed as a fraction of the link capacity C; therefore,
letting r = 1

C
implies that bandwidth is allocated at a granularity of 1 bit/sec.

Consider an instance of STO in which the value of r is
fixed at r = r′; that is, the p service tiers can only take the
values kr′, k = 1, . . . , K. Let U = {u1, . . . , uK} be the set of
candidate values for the p service tiers, uk = kr′; in Figure 1,
these candidate values are represented by the ticks below the
horizontal line. Integer K corresponds to the largest possible
multiple of r′, i.e., K = �xn

r′ �, where xn is the largest demand.
This version of STO is a special case of the directional p-

median problem we defined and studied in [4]. Consequently,
this problem can be solved in time O(pK) using a dynamic
programming algorithm; the reader is referred to [4] for details
on the dynamic programming formulation.

B. The Behavior Of The STO Objective Function

To obtain insight into how the unit rate r affects the
optimization, in Figure 2 we plot the objective function against
the value of r for an instance of STO with n = 1000 user
requests, p = 10 service tiers, and B = 0.01, with the set of
n requests generated from a uniform distribution in (0,1). We
varied the value of the basic unit r in increments of δr = 10−5.
For each (fixed) value of r we obtained the optimal service
tiers using the dynamic programming algorithm we developed
in [3], which does not take into account the term B

r of the
objective function. Once we obtained the service tiers, we
evaluated the objective function (1), including the term B

r .
The behavior exhibited in Figure 2 is representative of the

STO instances we have studied. At low values of r, the term
B
r representing the overhead cost dominates, resulting in large
overall values. As r increases, there is an initial period of rapid
decrease in the objective function as the term representing
the excess bandwidth penalty starts to become important. The
curve then settles into a seesaw pattern. The high and low
points along this pattern depend on the values of the multiples
of r relative to the demand points: when multiples of r are
aligned close to user requests, there is little bandwidth penalty
for mapping these requests to service tiers that are multiples or
r, hence the objective function has a lower value; the opposite
is true when there is a mismatch between multiples or r and
user requests. Also, as the value of r increases further, the
curve trends upwards. This behavior is due to two factors that
come into play when r becomes large: the excess bandwidth
term (i.e., the one in brackets) in (1) starts to dominate, and
at the same time this term increases in value as large values
of r are too coarse to minimize the excess bandwidth.

C. An Exhaustive Search Algorithm for STO

It is clear from Figure 2 that the objective function is non-
convex and includes several troughs at irregular intervals. This
non-convex nature makes standard optimization techniques
(e.g., steepest descent methods) impractical, as it is very
easy to get trapped in a local minima. We now describe an
exhaustive search approach for identifying the value of r and
the service tiers that minimize the objective function, and in
the next section we develop a suite of heuristics that trade
solution quality for running time.

For a STO instance with p service tiers and xn the largest
user request, the largest value that r may take under the
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Fig. 2. Objective function value against r, n = 1000, p = 10, B = 0.01,
demand points generated from a uniform distribution in (0, 1)

constraint that all p service tiers be an integer multiple of r is
rmax = xn

p . Hence, the optimal value of r lies in the interval
(0, rmax]. Let δr be a small increment value, and consider the
set R = {rm = mδr ≤ rmax,m = 1, 2, . . .}. For each (fixed)
rm ∈ R, we use the approach in Section II-A to obtain the
optimal service tiers, and evaluate the objective function (1).
The optimal solution to the STO problem is obtained as the
value of rm and the corresponding service tiers which produce
the smallest value for the objective function.

In order to determine the running time complexity of this
exhaustive search algorithm, let L = � rmax

δr
	 be the size of set

R (i.e., the number of candidate values of r to be considered),
and Km = xn

rm
be the number of candidate service tiers when

the value of r = rm. The dynamic programming algorithm
will be run L times, and during the m-th iteration, i.e., when
r = rm, the algorithm will take O(pKm) time. Since

L∑
m=1

pKm =
pxn

δr

L∑
m=1

1
m

=
pxn

δr
(ln L + γ) (2)

where γ = 0.577 . . ., is Euler’s constant, the complexity of
the algorithm is O(pxn

δr
ln( xn

pδr
)), and depends critically on the

value of the increment δr which determines the granularity
of the search. With finer granularity (i.e., smaller δr), the
accuracy of the algorithm increases, but its complexity also
increases dramatically; the opposite is true when δr becomes
larger and the granularity coarser. Also, the time complexity is
independent of the number n of users, and depends only on the
largest demand xn which is bounded above by the bandwidth
available on the highest capacity link in the network. Consider
a network with 10 Gbps links. A reasonable value for the
increment is δr = 64 Kbps. Assuming that the largest demand
can be equal to the capacity of a link, we have that xn

δr
≈ 106,

which demonstrates that the exhaustive search is taxing in
terms of both computational and memory requirements.

III. OPTIMIZATION HEURISTICS

We now present a set of heuristics for the STO problem.
Each heuristic trades solution quality for speed by using its
own approach to reduce the size of the space of candidate
values for r and/or the service tiers that it considers.

A. Demand Driven Heuristic (DDH)

Recall that, for each candidate value rm of r, the exhaustive
search algorithm considers all the Km = xn

rm
multiples of

rm as the set of potential service tiers, where Km can be
much larger than the number n of user requests. The intuition
behind this heuristic is that the optimal service tiers are more
likely to be located just above a user request, since otherwise
there would be a larger penalty in terms of excess bandwidth.
Therefore, the heuristic only considers the n multiples of rm

that are located immediately to the right of (or coincide with)
the n user demands. In other words, the set U of candidate
values for the p service tiers is U = {ui = rm × � xi

rm
�, i =

1, . . . , n}. Since there have to be n different candidate service
tiers, the range of values for r is in the interval (0, xn

n =
rmax]. Using n instead of Km and the new value for rmax in
expression (2), we find that the running time complexity of the
DDH heuristic is O(pxn

δr
), which represents an improvement

over the exhaustive algorithm, especially for small values of
δr which allow for a finer granularity search.

B. Service Tier Driven Heuristics

Both the DDH and the exhaustive search algorithms apply
the dynamic programming algorithm in [3] for each candidate
value for parameter r. The two heuristics we present in this
section are based on the assumption that the optimal service
tiers for STO are likely to be close to the optimal service tiers
for the corresponding problem with the same user demand
set X but in which r = r0 = 1

C . Therefore, each heuristic
initially runs the dynamic programming algorithm in [3] and
computes the optimal set Sr0 = {zr0

1 , . . . , zr0
p } of service tiers

for this problem. This step takes time O(pn), and this dynamic
programming algorithm is not used again by the heuristics.

The first algorithm, which we call the unidirectional service
tier driven heuristic (USDH), sets the i-th service tier for a
given candidate value rm of r to the smallest multiple of rm

that is greater than or equal to service tier zr0
i . In other words,

the set Sm of service tiers for candidate rm is defined as
Sm = {� z

r0
i

rm
�rm, i = 1, . . . , p}. The heuristic returns the value

rm and corresponding set Sm which result in the minimum
value for the objective function (1).

The second algorithm is called the bidirectional service tier
driven heuristic (BSDH), and computes a set of 2p possible
values for the service tiers for each candidate value rm. The
first set of p values is identical to the set Sm used by the
USDH algorithm above. In addition, this heuristic considers
the set S′

m consisting of the p largest multiples of rm that
are less than the corresponding service tiers zr0

i , i.e., Sm =
{� z

r0
i

rm
	rm, i = 1, . . . , p}. The 2p elements of these two sets

collectively become the candidates for being one of the p
service tiers when the value of r = rm. We use the dynamic
programming algorithm in [3] to select the optimal set of
p service tiers from the set Sm

⋃
S′

m. As with USDH, the
heuristic returns the value rm and corresponding p service
tiers that minimize (1).

We expect the BSDH heuristic to perform better than USDH
since it considers a larger number of candidate service tiers;
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TABLE I

FORMULAE FOR THE PDF AND CDF OF THE INPUT DISTRIBUTIONS

Distribution pdf cdf Domain
Uniform 1 x 0 ≤ x ≤ 1
Increasing 2x x2 0 ≤ x ≤ 1
Decreasing −2x + 2 −x2 + 2x 0 ≤ x ≤ 1
Triangle 4x 2x2 0 ≤ x < 0.5

−4x + 4 −2x2 + 4x − 1 0.5 ≤ x ≤ 1
4/9 4x/9 0 ≤ x < 0.25

Unimodal 6 6x − 25/18 0.25 ≤ x < 0.35
4/9 4x/9 + 5/9 0.35 ≤ x ≤ 1
1/4 x/4 0 ≤ x < 0.25
4 4x − 15/16 0.25 ≤ x < 0.35

Bimodal 1/4 x/4 + 3/8 0.35 ≤ x < 0.65
1 4x − 33/16 0.65 ≤ x < 0.75

1/4 x/4 + 3/4 0.75 ≤ x ≤ 1

this improved performance, however, is at the expense of
having to run the dynamic programming algorithm on a set
of 2p values, which takes time O(p2).

C. The Power of Two Heuristic (PTH)

This heuristic simply selects the set of p service tiers as the
set of the p consecutive powers of two such that the largest
element in the set is the smallest power of two that is larger
than or equal to the largest user request xn; in other words,
S = {2q+1, 2q+2, . . . , 2q+p | 2q+p−1 < xn ≤ 2q+p}. This
solution is consistent with STO in that it consists of service
tiers all of which are a multiple of a basic unit, in this case
2q+1. However, as we shall see shortly, the excess bandwidth
penalty for this solution can be quite high compared to the
other algorithms. We consider this solution here as a baseline
case as it is similar in spirit to approaches that assign packet
flows in classes (e.g., as in [6]) whose boundaries are defined
by powers of two.

IV. NUMERICAL RESULTS

We now present simulation results to investigate the relative
performance of the various algorithms we presented and to de-
termine their effect on the operation of a network. The demand
sets X of the problem instances we consider throughout this
section were generated from one of six distributions whose
pdf and cdf are listed in Table IV. Recall that that bandwidth
demands are normalized with respect to the link capacity,
hence, the domain of the pdf and cdf of all distributions in
Table IV is [0,1]. Also, based on our discussion in Section II-
B and the fact that the largest demand point xn ≤ 1, we used
an increment value δr = 10−5 whenever applicable.

Algorithm comparison. Let us first investigate the relative
performance of the various algorithms for STO with respect
to the objective function (1). Figure 3 plots the value of the
objective function returned by four STO algorithms, DDH,
BSDH, USDH, and PTH, against the value of r for a represen-
tative problem instance. We also show a lower bound (denoted
by “STO-LB”) obtained by solving the STO problem after
excluding the overhead term B

r in the objective function (1).
Consequently, the STO-LB solution is such that r = 1

C , i.e.,
the service tiers may take any values (since all bandwidth
values are multiples of the smallest possible unit 1

C ), and

thus serves as a lower bound for the STO algorithms. Since
the STO-LB and PTH solutions do not take parameter r into
account, they are shown as horizontal lines in the figure. We
note that PTH performs much worse than all other algorithms,
confirming our earlier observation that exponential grouping
of traffic flows is not an efficient approach; this result is
representative of the behavior of PTH, hence, we do not
consider this heuristic in the remainder of this section. We also
observe that the three algorithms DDH, BSDH, and USDH
perform close to the lower bound.

For the results shown in Figures 4 and 5, we have considered
thirty problem instances with n = 100, p = 5, and B =
0.05, generated from the increasing and triangle distributions,
respectively. The figures plot the best (i.e., lowest over all r)
objective function value returned by the DDH, BSDH, USDH,
and STO-LB algorithms, for each problem instance; again, the
STO-LB solution provides a lower bound for the other three
algorithms. The graphs show that, except for a few instances,
all three STO algorithms are close to the lower bound. Of the
three algorithms, DDH produces the lowest objective function
values, followed closely by BSDH. The objective function
values returned by USDH are generally higher than those
of the DDH and BSDH heuristics, but USDH has a much
faster running time. Hence, these results indicate that there
is a tradeoff between quality of solution and running time
complexity of the algorithms.

Bandwidth penalty due to tiered service. Let us now turn
our attention to determining the penalty in terms of excess
resources needed due to tiered service. Given a demand set
X , a continuous-rate link will use an amount of bandwidth
equal to ρX =

∑
i xi to satisfy all the demands in X . A link

of a tiered-service network, on the other hand, will in general
use more bandwidth, as each demand xi will be mapped to
the next offered level of service. For a network with service
levels obtained through the STO algorithm, the amount of
bandwidth used is given by the objective function (1) after
subtracting the term B

r . We use the normalized bandwidth
requirement metric, defined as the ratio of the amount of
bandwidth used by a tiered-service network to the amount of
bandwidth ρX used by a continuous network, to characterize
the bandwidth penalty incurred by a tiered-service network.
Figures 6 and 7 plot this metric against the number p of service
levels offered by the network. Each point in these curves is
the average over 30 different problem instances generated by
a uniform distribution; we have obtained similar results for all
distributions shown in Table IV.

Figure 6 presents results for two tiered-service scenarios:
one in which the service levels are obtained from the STO-
LB solution, and one in which they are obtained from the DDH
algorithm; DDH is selected as a representative algorithm for
the STO problem in which the service levels are all multiples
of a basic bandwidth unit r. As we can see, the curve for
DDH is above the one for STO-LB. This result is expected,
since the STO-LB solution is only concerned with minimizing
the excess bandwidth due to tiered service, while the DDH
algorithm also has to take into account the constraint that
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all service levels be multiples of a basic unit. However, the
additional penalty due to this constraint is relatively small;
we have observed similar behavior for all distributions. Also,
the normalized bandwidth requirement decreases rapidly with
the number of service levels; this result can be explained by
noting that as the number of levels becomes very large, the
tiered-service network reduces to a continuous-rate network.

Figure 7 shows the effect of the number n of users on the
normalized bandwidth requirement for the DDH algorithm;
the effect on the STO-LB solution is similar. As the number
n of users increases, the normalized bandwidth requirement
does increase slightly, but the effect diminishes quickly so
that the curve for n = 10, 000 almost coincides with the
curve for n = 1, 000. The conclusions we can draw from
these figures, and similar ones which can be found in [1], is
that (1) with p = 10 − 15 levels, the bandwidth required by
a tiered-service network is only about 5-10% higher than that
of a continuous-rate network; (2) the additional constraint that
all service levels be a multiple of a basic unit only slightly
adds to the bandwidth penalty; and (3) increasing the number
n of users imposes only an incremental penalty on bandwidth.

Impact on network performance. Finally, let us examine
the practical impact of tiered service on overall network
performance. To this end, we consider a scenario in which con-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

1915



nections arrive and depart dynamically. A connection between
source-destination pair (s, d) requires a certain amount of
bandwidth; if a path between s and d with sufficient resources
can be found, the connection is established, otherwise, it is
rejected (blocked). The performance measure of interest in
this context is the connection blocking probability. We use
simulation to compare the blocking probability of a continuous
network to that of a tiered-service network. In a continuous
network, a connection requiring bandwidth xi is accepted if
a path with at least that much bandwidth can be found. In
a tiered-service network, the bandwidth demand xi is first
mapped to the next highest service level offered, say, zj ,
and the connection is accepted if a path with bandwidth at
least equal to zj is found. The service levels for the tiered-
service network are computed in advance for the given demand
distribution, as discussed earlier.

In our simulation model, connections arrive as a Poisson
process with rate λ, and their mean holding time is an
exponentially distributed random variable with rate µ = 1.
Each simulation run lasts until 100,000 connection requests
have been served. Each point in the blocking probability curves
shown here is the average of thirty simulation runs; we also
plot 95% confidence intervals which we estimated using the
method of batch means. All the results are for the NSFNet
network topology, which can be found in [1]. The capacity of
all links is set to two units of bandwidth; since the demand
distributions in Table IV are defined in the interval [0, 1],
this assumption implies that the bandwidth requested by any
connection is at most one half the link capacity.

Figure 8 plots the blocking probability against the con-
nection arrival rate for a continuous network and two tiered-
service networks, one using the STO-LB solution to obtain the
service levels and one using DDH, a representative algorithm
for the STO problem. As expected, the blocking probability of
the continuous-rate network is lowest, that of the tiered-service
network allocating bandwidth in multiples of a basic unit is
highest (DDH algorithm), and that of a network (STO-LB
solution) which minimizes the excess bandwidth is in between
the other two. The higher blocking probability of a tiered-
service network is the result of the additional resources that
such a network uses for each traffic demand. However, the
increase in blocking probability is rather small and it may be
more than compensated by the advantages of tiered service.

Figure 9 shows the behavior of the blocking probability for
the DDH algorithm as we vary the number of service levels
p. The curves confirm the intuition that as p increases, the
blocking probability of the tiered-service network decreases
and tends towards that of a continuous-rate network. This
figure suggests that the network designer/engineer may select
the number p of the service levels to be offered so as to
combine the advantages of tiered service with the performance
of a continuous-rate one.

V. CONCLUDING REMARKS

Tiered service has many potential applications in network-
ing, especially in contexts where catering to very large sets
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of heterogeneous users poses significant scalability problems.
We have developed efficient algorithms to determine optimal
service levels that are multiple of a basic bandwidth unit,
allowing packet switched networks to emulate the operation of
TDM networks. Our ongoing research aims to extend this work
by including pricing considerations in service level selection.
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