Performance Evaluation of Multi-Core,
Multi-Threaded SIP Proxy Servers (SPS)

Ramesh Krishnamurthy, George N. Rouskas'*
fNorth Carolina State University, Raleigh, NC 27695-8206 USA
*King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Process schedulers are part of the core functionality
of an operating system (OS), and have been enhanced over the
years to account for multiple cores in the processors and to
support multi-threaded applications. In this study, we investigate
the impact of the Linux scheduler’s load-balancing algorithm on
the performance of multi-threaded OpenSIPS (an open source
SIP proxy server, SPS) running on a multi-core processor system.
Linux uses the ‘“completely fair scheduler” (CFS) scheduling
policy and provides parameters specifically tunable in a multi-
core environment. We conducted extensive experiments and
analyzed the collected data to characterize the performance of
SPS as a function of the number of CPU cores, the number of
server threads and the call arrival rate. Based on our analysis,
we show how to configure the various scheduler parameters as
a function of the number of CPU cores to achieve a significant
improvement in SPS performance. We further present a capacity
planning model as a tool that service providers may use to obtain
a first-order approximation of the capacity of their system that
yields a good match to experimental results.

I. INTRODUCTION

Most multi-core processors in use currently follow the
symmetric multi-processor (SMP) paradigm, whereby all cores
are identical, are controlled by a single instance of the OS,
and share a common main memory. With SMP, processes
that do not need to share data with each other may be
run on independent CPU cores to improve the performance
of each process. The OS scheduler performs load balancing
so as to ensure that some cores do not become overloaded
if other cores have available processing capacity. Given the
proliferation of multi-core systems, the characterization of the
performance of multi-threaded applications on such systems
is of practical importance.

The scalability of Linux on a multi-core system was ana-
lyzed in [1] by examining seven system applications. It was
determined that all applications except one trigger a scalability
bottleneck in the Linux kernel, and several modifications to the
kernel were introduced to reduce this bottleneck. In [2], the
scalability of a multi-core web server was examined, and it was
observed that the capacity of the address bus in the eight-core
system was the limiting factor in performance scaling. The
performance of a SIP server on multi-core systems was studied
in [3]. This study analyzed the performance of a realistic SIP
workload on three different multi-core architectures and sug-
gested improvements to certain operations, including garbage
collection and lock contention, to improve performance.

Several studies have specifically investigated the perfor-
mance of SIP proxy servers (SPS). A load balancing algorithm

for processing SIP messages in server clusters was developed
in [4] and led to improvements in response time. The de-
ployment of a multimedia service involving SIP sessions and
MGCP connections was studied in [5], and strategies consist-
ing of resource allocation and configuration in a virtualized
environment were proposed to provide an optimal deployment.
There have also been several attempts in the literature to
characterize the performance of the SPS analytically, includ-
ing [6]-[8]; these studies make specific assumptions about the
service time and its distribution. On the other hand, in our ear-
lier work [9], [10], we have carried out comprehensive packet-
level measurements to obtain an accurate characterization of
SPS performance in terms of service time, waiting time and
packet drop rate.

In this paper, we investigate the impact of the load-balancing
parameters of the Linux completely fair scheduler (CFS)
policy on the performance of multi-threaded SPS on multi-
core systems. Our work differs from the above studies in that
we specifically focus on the Linux CFS scheduler, and we
provide guidelines for configuring the scheduler to optimize
load-balancing among the CPU cores. Following the intro-
duction, we describe the experimental testbed measurement
methodology in Section II. In Section III, we identify and tune
the CFS scheduler parameters for multiple cores, and present
experimental performance data in Section IV. In Section V,
we develop a capacity planning model for a multi-core multi-
threaded SPS system. We conclude the paper in Section VI.

II. MEASUREMENT METHODOLOGY AND EXPERIMENTS

SPS is a central component of the SIP infrastructure, and
handles all SIP messages generated by the user-agent client
(UAC) and user-agent server (UAS) during setup, modification
or termination of each media session. In case of overload,
the SPS may become a performance bottleneck that limits the
ability of users to establish SIP sessions. Consequently, we
only focus on the performance of SPS in this work.

We use the same testbed consisting of an OpenSIPS SPS
and SIPp UAC and UAS, as in our earlier work [9], [10]. For
the performance evaluation of multi-threaded SPS on multiple
cores, we upgraded the OpenSIPS SPS server to use Linux OS
version 3.2.51 that is run on the system with two quad-core
Intel Xeon CPU E5540 @ 2.53 GHz processors of Figure 1.

We modified the OpenSIPS and Linux kernel source code,
and designed a set of experiments to obtain exact time mea-
surements for each SIP packet in the SPS, from the arrival

nnnnnnnnnnnnnnn

i | oo || L3 Cache (Shared) | i

| Main Memory |

Fig. 1. Dual quad-core processor hosting the OpenSIPS server

instant at the kernel to the departure instant from the kernel
after the packet has undergone processing at the SIP layer, as
described in [9], [10]. Specifically, we measure two main time
components for each packet, the kernel receive time, K.,
and the SIP processing time, Ty;;,. K., represents the time a
packet spends within the kernel after arrival, and consists of
the time the packet takes to undergo processing at the device,
network, transport and socket layers, the waiting time at the
socket queue, and the time for the packet to be copied to user
space from kernel space. Ty;, denotes the time the packet
undergoes processing within the SIP layer. As we explain
in [9], K., and T,;, represent the waiting and service times
of a packet, respectively.

For each experiment, 100,000 calls were started between
the UAC and UAS via the SPS. For each call, the messages
exchanged between the UAC and UAS are the SIP call setup
messages INVITE, 180 RINGING, 2000K and ACK, and the
call teardown messages, BYE and 2000K. For each message
processed by the SPS, we measured the time components
described above to determine the waiting and service times
of the message through the SPS; we also kept a count of
any messages dropped. Each experiment was characterized by
three parameters: (1) Number of CPU cores. The experiments
were conducted with the SPS server configured as a 2-, 4-,
or 6-core system. (2) Number of server threads. Experiments
were conducted with 2, 4, 6, 8, and 16 server threads for
each of the multi-core systems above. (3) Call arrival rate.
We varied the call rate starting at 200 calls per second (cps),
with an increment of 200 cps, up to a maximum call rate
beyond which the SPS is overloaded and the drop rate exceeds
a certain threshold.

Upon completion of an experiment for a specific call rate
and number of cores and server threads, we process the logged
data and calculate the sample mean values for K., and Ty;;;
we obtain these mean values for each SIP message type as
well as the overall mean across all six message types. We also
estimate 95% confidence intervals around the overall mean.
In addition, we use the netstat command to measure the
packet drop rate.

III. IMPACT OF PROCESS SCHEDULER ON PERFORMANCE

In the 3.0-based Linux version, two configurable sched-
uler parameters are available specifically for tuning the
multi-core operation and performance of the system.
sched_migration_cost is a tunable parameter used to

specify the “cost” of migrating a task from the current CPU
to a CPU that is becoming idle. The scheduler load-balancing
algorithm uses this parameter to allow a CPU going idle to pull
tasks from another CPU. The sched_tunable_scaling
parameter allows the various scheduler parameters to be scaled
as a function of the number of CPUs in the system. There are
three options for this parameter: “no scaling” (i.e., the values
of other scheduler parameters are used without modification);
“logarithmic scaling” (i.e., other parameter values are multi-
plied by 1+ log(ncpus)); and “linear scaling” (i.e., parameter
values are multiplied by ncpus).

The default value for sched_migration_cost is
500,000 (i.e., 500 ws), and for sched_tunable_scaling
is “logarithmic scaling.” However, the study in [11] found that
setting the value of sched_migration_cost to 5,000,000
(5 ms) instead of the default one results to better performance.
This is due to the fact that specifying a very high migration
cost forces the scheduler to keep a task in the current CPU,
thereby increasing cache utilization.

In our earlier work [10] on a single-core system, we used
the following values for three other scheduler parameters
to move the scheduler policy to “server” mode, as recom-
mended in [12]: sched_latency_ns = 1,000,000 (1 ms),
sched_min_granularity_n = 100,000 (100 us), and
sched_wakeup_granularity_ns = 25,000 (25 us). In
this study, we denote as the baseline “multi-core server”
mode the scheduler configuration in which, in addition to the
above three parameter values, the values of the multi-core
specific parameters are set to: sched_migration_cost
= 5,000,000 (5 ms), and sched_tunable_scaling is
“logarithmic scaling.”

A. Enhanced Multi-Core Server Mode

We note that the parameter value recommendations in [12]
are for a generic server configuration and do not take into
account workloads or operation characteristics specific to SPS.
In this section, we develop a methodology for configuring the
scheduler parameters specifically for SPS servers.

According to [13], the two primary factors operators con-
sider when designing their network is the service availability
to end-users and the cost of operating the network. Fur-
thermore, from an economic standpoint, network operators
aim to achieve high server utilization in order to maximize
the return on their capital investment. These observations
motivate us to develop guidelines for tuning the scheduler
parameters so as to balance these two conflicting objectives:
availability of SIP service and SPS server utilization. To
illustrate the tradeoffs involved, consider the scheduler pa-
rameter sched_migration_cost. Increasing the value of
this parameter considerably higher than the default value of
500,000 (500 us), e.g., as suggested in [11], will allow SPS
threads to remain resident in a single CPU. However, doing so
may cause the CPU to become overloaded as the call arrival
rate increases, which in turn will result in excessive loss of
SIP call setup packets and negatively affect service availability.
Therefore, we consider the packet drop rate (PDR) as the key

performance metric of interest. Note that the only packets seen
by the SPS are SIP call setup and teardown messages. Since
the loss of any of these messages affects the call establishment
process, we argue that the PDR captures the impact of server
overload on end-user experience.

We use the netstat command in each experiment to
obtain the number of SIP messages dropped at the SPS;
this number is provided by the RcvErrors counter that is
incremented by the Linux kernel when the receive buffer is full
(note that in our experiments only the SIP process is active,
hence the RcvErrors counter provides an accurate count
of dropped SIP messages). Therefore, we estimate the PDR
metric as: PDR = RcvErrors/Total SIP MSGs.

We now summarize our findings regarding the impact of
each scheduler parameter. (1) sched_latency_ns: Setting
this parameter to the fixed value 800,000, independent of
the number of threads, achieved the best results for the
single-core SPS system [10]. In experiments with multi-
core systems, scaling this value linearly with the number
of CPU-cores resulted in the best performance in terms
of PDR. Therefore, we used the values 800,000 X ncpus,
where ncpus = 2,4,6, for the 2-, 4-, and 6-core systems,
respectively. (2) sched_min_granularity_ns: As in [10],
we set this parameter to a quantity that corresponds to
the measured value of mean service time T§;, at the point
where the system starts experiencing overload. Note that the
minimum value allowed for this parameter is 100,000. The
specific values we used for this parameter were as follows:
2-core system: 100,000 for 2, 4, and 6 threads, 150,000 for
8 threads, and 200,000 for 16 server threads; 4- and 6-core
systems: 100,000 for 2, 4, 6 and 8 threads and 200,000
for 16 server threads. (3) sched_wakeup_granularity_ns:
Setting the value of this parameter to zero achieved the best
results across all threads and CPU core configurations [10].
(4) sched_migration_cost: For 2- and 4-core systems we
set this parameter to zero, while for 6-core systems a value
of 500,000 provided the best results. In the next section we
present experimental results that justify this choice of values.
(5) sched_tunable_scaling: Recall that this parameter may
be used to scale the values of other scheduler parameters either
logarithmically or linearly with the number of cores. Since our
findings indicate that there is no common scaling factor for
the other four parameters above, we set this parameter to “no
scaling.”

We will refer to the configuration of CFS with these
parameter values as the enhanced “multi-core server” mode.

IV. EXPERIMENTAL RESULTS
A. Impact of sched_migration_cost

Figure 2 shows the impact of varying the value of
sched_migration_cost on the packet waiting time (X,..,) and
PDR, as a function of the number of CPU cores. In these ex-
periments we used the following values for the call arrival rate
and number of threads: 2-core system — 4200 cps, 4 threads;
4-core system — 5400 cps, 6 threads; 6-core system — 6200 cps,
8 threads. Results for other call arrival rate and thread values

300

Krev (Kernel Time in

(a) (b)

Impact of sched_migration_cost on (a) Krcy, (b) PDR

Fig. 2.

are very similar and are omitted. Also, the scheduler was
configured in the enhanced “multi-core” mode described in
the previous section, in that all parameters were set to values
dictated by that mode, except the sched_migration_cost
parameter whose value was varied as shown in the figures.

Consider the CPU architecture shown in Figure 1, and recall
that the value of sched_migration_cost is used by the load
balancing algorithm to determine whether to move tasks to
an idle CPU, with a low value allowing an idle CPU to pull
tasks more easily. Also note that the main operation of the SPS
involves processing a packet and forwarding it to the UAC or
UAS. For 2- and 4-core systems, a value of zero provided
the best results: in these systems, all cores are part of same
processor, task migration incurs minimal cache penalty, hence
setting this cost to zero allows for better load balancing. For
the 6-core system, the most effective value is 500,000. In such
systems, the cores are distributed across two processors, thus
the penalty of migrating the task in terms of cache miss is, on
average, higher. Therefore, using a low but non-zero value for
the migration cost in an attempt to keep tasks on the same
CPU provided an appropriate balance between the cost of
cache misses and load balancing across CPUs. In all cases,
setting the migration cost to the high value recommended
in [11] results in low or no thread migration; hence, increased
load in a single core leads to high packet drop rates even
if other CPUs have available capacity. These results indicate
that scheduler configuration is highly application-dependent
and settings that work well for some applications may result
in poor performance for others.

B. SPS Performance

Tables I and II present the measured values of Ty;, (ser-
vice time of SIP messages), K., (waiting time), and PDR
under the baseline and enhanced multi-core server mode,
respectively, for the 2-core system and various server thread
configurations. Tables IV and V present the same data for
the 4-core system, while Tables VII and VIII show data for
the 6-core system. Each column in these values presents the
average of thirty experiments for the stated number of threads
and load (in calls per second, cps). For each value of the
number of threads, we present results for two load values: the
value at which the PDR exceeds 1% for the first time, and the
immediately lower value.

We make two observations. For the same load value, con-
figuring the scheduler parameters to the enhanced server mode

always improves the SPS performance over the baseline mode,
in terms of PDR and waiting time. Furthermore, in all cases
the load at which the PDR rate crosses the 1% threshold we
imposed is higher for the enhanced mode than the baseline
mode in terms of CPS. We also see that, as the number of cores
increases, this threshold load is higher for 4-core compared to
2-cores, and increases further for 6-core; this result is expected
given the higher capacity available with additional cores.

To better illustrate the performance improvement under the
enhanced mode, Tables III, VI, and IX compare the PDR and
K, values for 2-, 4-, and 6-core systems, respectively. The
results shown are for a specific load for each thread value;
this load value corresponds to the scenario where the PDR
rate under the baseline mode exceeds the 1% threshold for
the given number of threads. As we can see, the performance
improvement is between 4-53% for the PDR rate, and be-
tween 1-72% for K., for the 2-core system. For the 4-core
(respectively, 6-core) system, the improvement is 14-42% (re-
spectively, 33-58%) for the PDR and 2-42% (respectively, 12-
45%) for K,.,. In fact, the multi-core enhanced server mode
shows improvements across all core and thread configurations.

V. CAPACITY PLANNING MODEL

Several studies have investigated aspects of capacity plan-
ning. A new methodology was presented in [14] for the
efficient analytic solution to account for the burstiness of work-
load so as to develop a model for capacity planning. In [15],
time-series analysis techniques were used to automatically
adjust the number of users for an on-demand streaming service
and the server bandwidth demand; the proposed mechanism
was evaluated on a dataset collected from a video-on-demand
service provider. The study in [16] compared the static vs.
dynamic resource allocation of virtual machines (VMs) in
corporate clouds to evaluate the energy efficiency of each
mechanism. The authors concluded that dynamic resource allo-
cation and associated migration overhead may cost more than
static VM allocation and does not increase energy efficiency.

Based on the PDR measurements we have collected from
our experiments, we now develop a capacity planning model
that cloud providers and service providers may use to obtain
a first-order approximation of the load (in calls per second)
that can be supported by their SPS servers without exceeding
the 1% drop rate threshold. Referring to Figure 1, let p
and ¢ be the number of independent processors and CPU
cores, respectively, in the system that are available to run
SPS threads. Also, let 7}, . be the number of threads that
provides the best performance (i.e., the highest call arrival
rate for which the PDR under the enhanced multi-core server
mode does not exceed 1%) for the given number of CPU
cores and processors. In our experiments, we have found that
in systems with only p = 1 processor with ¢ cores, setting
T1,. = ¢+ 2 provides a good balance between the conflicting
factors of cache locality, multi-threading overhead and process
migration cost, and provides the best results. However, for
p > 2 of processors whereby threads execute on cores that are
in different processors, keeping the number of threads close

to the total number of cores provides the best performance as
it avoids the additional migration cost of moving threads from
one processor to another. In this case, we let T, . =~ ¢, p > 2.
Indeed, referring to Tables II, V, and VIII, we see that the
above formula accurately predicts the number of threads that
gives the best results for the 2-, 4-, and 6-core systems as 4, 6,
and 6 threads, respectively (note that p = 1 for 2- and 4-core
systems, while p = 2 for the 6-core system).

Now let C'1; be the baseline capacity of a single-core,
single-thread system; in our earlier studies [9], [10], we
established C'y ; = 1000 cps for our system. Then, the capacity
of the multi-core, multi-threaded system can be estimated
as: Cp,. = T, x C11. Applying this expression provides
estimates of the CPS capacity of 4000 cps for the 2-core
system and 6000 for the 4- and 6-core systems, a good first-
order approximation of the experimental results.

VI. CONCLUDING REMARKS

We investigated the performance of multi-core, multi-
threaded SPS and the impact of Linux CFS scheduler tuning on
SPS in terms of packet drop rates and waiting times. We have
determined CFS scheduler settings that result in significant
gains in performance, so as to extract performance gains
from the existing computing infrastructures without additional
capital expenses. We further developed a capacity planning
model that provides a good first-order approximation of the
total capacity of the SPS system in terms of the call arrival
rate that may be supported without affecting user experience.

REFERENCES

[1] S. Boyd-Wickizer, et al. An analysis of linux scalability to many cores.
USENIX OSDI, 2010.

[2] B. Veal and A. Foong. Performance scalability of a multi-core web
server. 3rd ACM/IEEE ANCS, pp. 57-66, 2007.

[3] C.P. Wright, et al. SIP server performance on multicore systems. /BM
Journal of Research and Development, 54(1):7:1-7:12, January 2010.

[4] H. Jiang, et al. Design, implementation, and performance of a load bal-
ancer for SIP server clusters. IEEE/ACM Trans. Netw., 20(4):1190-1202,
Aug. 2012.

[5] M. Femminella, et al. Optimal deployment of open source application
servers providing multimedia services. IEEE Network, 28(5):54-63,
2014.

[6] S.V.Subramanian and R. Dutta. Comparative study of M/M/1 and M/D/1
models of a SIP proxy server. ATNAC 2008, pp. 397-402, Dec. 2008.

[7]1 S.V. Subramanian and R. Dutta. Measurements and analysis of M/M/1
and M/M/c queueing models of the SIP proxy server. ICCCN 2009.

[8] S.V. Subramanian and R. Dutta. Performance and scalability of M/M/c
based queueing model of the SIP proxy server - a practical approach.
ATNAC, pp. 1-6, Dec. 2009.

[9] R. Krishnamurthy and G. N. Rouskas. Performance evaluation of multi-
threaded SIP servers. In Proceedings of IEEE ICC 2015, June 2015.

[10] R. Krishnamurthy and G. N. Rouskas. Evaluation of SIP proxy
server performance: Packet-level measurements and queuing model. In
Proceedings of IEEE ICC 2013, pages 2330-2336, June 2013.

[11] CFS Load Balancing for SQL. http://tinyurl.com/CFS-SQL-Load.

[12] CFS Tuning by IBM. http://tinyurl.com/CFSTuning.

[13] Capacity Management and Optimization of Voice Traffic.
https://www.cisco.com/en/US/technologies/tk869/tk769/technologies_
white_paper0900aecd8070329d.html.

[14] G. Casale, N. Mi, and E. Smirni. Model-driven system capacity planning
under workload burstiness. IEEE Trans. Comp., 59(1):66-80, Jan. 2010.

[15] D. Niu, et al. Demand forecast and performance prediction in peer-
assisted on-demand streaming systems. INFOCOM, pp. 421-425, 2011.

[16] A. Wolke, et al. Planning vs. dynamic control: Resource allocation in
corporate clouds. IEEE Transactions on Cloud Computing, 2015.

TABLE I
MEASURED SPS PERFORMANCE, BASELINE MULTI-CORE SERVER MODE, SPS ON 2-CORE

Model Parameters Number of Server Threads
2 Threads 4 Threads 6 Threads 8 Threads 16 Threads

3000cps [3200cps 3600cps [3800cps 3400cps | 3600cps 3000cps [3200cps [| 2400cps [2600cps
Arrival rate (packets/sec) 18000 19200 21600 22800 20400 21600 18000 19200 14400 15600
Tsip (1s) 58.05 60.31 74.92 78.22 96.78 104.48 114.64 124.6 204.04 218.29
Krey (18) 47497 684.87 292.39 373.72 319.04 436.66 308.36 412.81 352.09 395.01
Call-setup Drops 2762 4202 2206 3792 2883 3614 2850 4452 2804 3364
Call-setup Messages 327213 322174 322212 318275 323412 320313 328611 323481 339835 335899
Total Messages 390029 379763 373528 366842 379274 372628 394732 384077 427449 417470

[PDR

[[00084 | 0.0130 || 0.0053 | 0.0119 || 0.0089 | 0.0113 || 0.0087 | 0.0137

[[00083 | 0.0100

TABLE II
MEASURED SPS PERFORMANCE, ENHANCED MULTI-CORE SERVER MODE, SPS ON 2-CORE

Model Parameters Number of Server Threads
2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
3800cps [4000cps [4400cps | 4600cps || 3800cps | 4000cps [| 3200cps | 3400cps [| 2600cps [2800cps
Arrival rate (packets/sec) 22800 24000 26400 27600 22800 24000 19200 20400 15600 16800
Tsip (us) 54.41 53.55 83.62 85.34 101.28 116.15 125.78 139.26 218.07 262.32
Krev (1s) 241.28 283.81 469.17 591.99 348.17 569.58 358.59 492.15 398.73 622.95
RCV Errors 3087 8017 3119 4245 3348 5366 3798 5586 3986 6830
Call-setup Drops 2682 7002 2736 3734 2879 4646 3205 4781 3228 5624
Call-setup Messages 320141 635594 317922 315676 321645 316459 324962 318851 334935 326550
Total Messages 368496 727720 362463 358886 373972 365455 385030 372492 413491 396564
H PDR H 0.0084 [0.011 “ 0.0086 [0.0118 “ 0.0089 [0.0147 H 0.0098 [0.0149 H 0.0096 [0.0172 ”
TABLE III
DROP RATE AND KERNEL TIME (K¢,) COMPARISON, SPS ON 2-CORE
Server Threads and CPS Drop Rate comparison Kernel time, K¢, comparison (i4s)
Baseline Mode | Enhanced Mode [% Lower || Baseline Mode | Enhanced Mode [% Lower
2 Threads, 3200cps 0.0130 0.0060 53.84% 684.87 186.83 72.12%
4 Threads, 3800cps 0.0119 0.0082 31.09% 373.72 253.45 32.18 %
6 Threads, 3600cps 0.0113 0.0058 48.67% 436.66 264.13 3951 %
8 Threads, 3200cps 0.0137 0.0098 28.47% 412.81 358.59 13.13%
16 Threads, 2600cps 0.0100 0.0096 4% 395.01 388.73 1.6%
TABLE IV
MEASURED SPS PERFORMANCE, BASELINE MULTI-CORE SERVER MODE, SPS ON 4-CORE
Model Parameters Number of Server Threads
2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
4000cps | 4200cps [| 4800cps [5000cps [[5000cps [5200cps || 4200cps [4400cps [[3800cps | 4000cps
Arrival rate (packets/sec) 24000 25200 28800 30000 30000 31200 25200 26400 22800 24000
Tsip (1s) 63.25 61.06 86.88 79.61 94.18 94.86 120.77 121.99 177.37 188.18
Kircv (15) 427.16 518.30 220.13 212.46 165.59 192.17 212.6 221.57 209.9 259.36
RCV Errors 3318 4877 3387 3962 3276 3617 3145 3748 3101 3769
Call-setup Drops 2891 4267 3000 3542 2910 3214 2750 3305 26384 3279
Call-setup Messages 319102 315952 315704 313908 315739 315209 318907 316519 320946 318663
Total Messages 366171 361079 356395 351104 355482 354681 364633 358892 370774 366263
H PDR H 0.0091 [0.0135 H 0.0095 [0.0112 H 0.0092 [0.0102 H 0.0086 [0.0104 H 0.0084 [0.0103 ”

TABLE V

MEASURED SPS PERFORMANCE, ENHANCED MULTI-CORE SERVER MODE, SPS ON 4-CORE

Model Parameters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads

4200cps [4400cps 5000cps [5200cps 5400cps [5600cps 4600cps [4800cps 4600cps [4800cps
Arrival rate (packets/sec) 25200 26400 30000 31200 32400 33600 27600 28800 27600 28800
Tsip (1s) 61.03 60.49 80.74 79.59 89.59 96.5 114.33 109.6 184.16 203.75
Kirew (1s) 386.12 402.52 181.61 221.73 125.61 272.06 193.29 206.95 255.31 395.69
RCV Errors 3339 5001 3411 4642 2365 5580 3156 4215 2328 4916
Call-setup Drops 2918 4400 3038 4124 2098 4987 2789 3745 2044 4342
Call-setup Messages 318842 315232 315041 313723 316880 312176 316979 314595 318870 313507
Total Messages 364836 358278 353704 353137 357111 349292 358660 354077 363074 354953

PDR

[[00092 | 0.0139 | 0.009% |

0.013

[0.0066 | 0.0159 || 0.0088 | 0.0119]| 0.0064 | 0.0138

TABLE VI
DROP RATE AND KERNEL TIME (K¢,) COMPARISON, SPS ON 4-CORE

Server Threads and CPS Drop Rate comparison Kernel time, K¢y, comparison (us)
Baseline Mode [Enhanced Mode [% Lower || Baseline Mode | Enhanced Mode | % Lower
2 Threads, 4200cps 0.0135 0.0092 31.85% 518.3 386.12 25.5%
4 Threads, 5000cps 0.0112 0.0096 14.28% 212.46 181.61 14.5%
6 Threads, 5200cps 0.0102 0.0059 42.16% 192.17 110.16 42.67%
8 Threads, 4400cps 0.0104 0.0057 45.19% 221.57 132.69 40.11%
16 Threads, 4000cps 0.0103 0.0063 38.83% 259.36 252.64 2.6%
TABLE VII
MEASURED SPS PERFORMANCE, BASELINE MULTI-CORE SERVER MODE, SPS ON 6-CORE
Model Parameters Number of Server Threads
4 Threads 6 Threads 8 Threads 16 Threads
5800cps [6000cps |[6000cps | 6200cps |[6000cps | 6200cps || 3800cps | 4000cps
Arrival rate (packets/sec) 34800 36000 36000 37200 36000 37200 22800 24000
Tsip (18) 71.78 72.12 83.03 93.07 100.29 110.13 181.02 193.93
Kircv (18) 161.10 207.9 124.3 277.4 165.35 214.04 187.3 278.03
RCV Errors 2832 4366 2489 6235 3295 5204 2640 4673
Call-setup Drops 2505 3853 2200 5408 2852 4650 2283 4058
Call-setup Messages 317172 315447 317769 316568 320129 312013 321594 317896
Total Messages 358497 357417 359417 364948 369834 349180 371789 366019
H PDR H 0.0079 [0.012 H 0.0069 [0.017 H 0.0089 [0.0149 H 0.0071 [0.0127 ”
TABLE VIII

MEASURED SPS PERFORMANCE, ENHANCED MULTI-CORE SERVER MODE, SPS ON 6-CORE

Model Parameters Number of Server Threads
4 Threads 6 Threads 8 Threads 16 Threads

6000cps [6200cps 6600cps [6800cps 6400cps [6600cps 4200cps | 4400cps
Arrival rate (packets/sec) 36000 37200 39600 40800 38400 39600 25200 26400
Tsip (us) 72.25 73.59 91.09 92.26 111.71 112.86 195.16 211.05
Krev (us) 182.19 221.16 180.26 215.09 224.81 278.99 245.88 386.42
RCV Errors 2946 4586 2777 4435 3417 5509 3406 5656
Call-setup Drops 2573 3994 2344 3759 2897 4698 2978 4949
Call-setup Messages 319534 317889 325325 322247 321044 320477 318556 314689
Total Messages 365891 364950 385418 380141 378616 375724 364293 359605

H PDR H 0.0080 [0.013 H 0.0072 [0.0117 H 0.0090 [0.0146 H 0.00935 [0.0157 ”

TABLE IX

DROP RATE AND KERNEL TIME (K¢,) COMPARISON, SPS ON 6-CORE

Server Threads and CPS

Drop Rate comparison

Kernel time, K¢y, comparison (us)

Baseline Mode [Enhanced Mode [% Lower [Baseline Mode | Enhanced Mode | % Lower
4 Threads, 6000cps 0.012 0.008 33.33 % 207.9 182.19 12.36%
6 Threads, 6200cps 0.017 0.0071 58.23% 277.4 151.4 45.4%
8 Threads, 6200cps 0.0149 0.0086 42.28% 214.04 177.89 16.88 %
16 Threads, 4000cps 0.0127 0.0081 36.22% 278.03 193.68 3033 %

