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Abstract. We present an analytical model for computing call blocking
probabilities in a LEO satellite network that carries voice calls. Both
satellite-fixed and earth-fixed constellations with inter-orbit links and
hand-offs are considered. The model is analyzed approximately by de-
composing it into sub-systems. Each sub-system is solved in isolation
exactly using a Markov process, and the individual results are combined
together through an iterative method. Numerical results demonstrate
that our method is accurate for a wide range of traffic patterns.

1 Introduction

Recent advances in satellite communications make it possible to use satellites as
an alternative to wireless telephone and wireless networks. A low (or medium)
earth orbit (LEO or MEO) satellite system is a set of identical satellites, launched
in several orbital planes with the orbits having the same altitude. The satellites
move in a synchronized manner in trajectories relative to the earth. Such a set
of satellites is referred to as a constellation of satellites.

If satellites are equipped with advanced on-board processing, they can com-
municate directly with each other by line of sight using inter-satellite links (ISL).
If the ISL is between satellites on the same orbit, it is called intra-plane ISL, and
if it is between satellites in adjacent planes it is called inter-plane ISL. Depending
on the antenna technology used, satellite constellations can provide one of two
types of coverage. If the satellite antenna is fixed as the satellite moves along
its orbit, then the coverage is called satellite-fixed. In this case, the footprint
area moves along with the satellite. In earth-fixed coverage, the earth’s surface
is divided into cells, as in a terrestrial cellular system, and a cell is serviced
continuously by the same beam during the entire time that the cell is within the
footprint area of the satellite. This type of coverage requires an antenna that
tracks the cell area.

The performance of satellite systems has been studied by several authors [1]-
[8]. In general, most studies rely on simple queueing models (e.g., the M/M/K/K
queue, where K denotes the number of channels per cell) to evaluate call blocking
probabilities, and focus on devising methods for improving the performance of
calls during hand-offs (e.g., by assigning higher priority to hand-off calls, using
guard channels, or making reservations ahead of a hand-off instant). In [9], the
authors proposed an approximation method for calculating call blocking prob-
abilities in a group of LEO/MEO satellites arranged in a single orbit. In this
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Fig. 1. Three satellites in a single orbit

paper we generalize this algorithm to an entire constellation of LEO/MEO satel-
lites involving multiple orbits. We consider both satellite-fixed and earth-fixed
constellations with inter-orbit links and hand-offs.

The paper is organized as follows. In Section 2 we present briefly an exact
Markov process model under the assumption that satellites are fixed in the
sky (i.e., no hand-offs take place), and in Section 3 we present an approximate
decomposition algorithm for a constellation of satellites. In Section 4 we extend
our approach to model hand-offs for both earth-fixed and satellite-fixed coverage.
We present numerical results in Section 5, and in Section 6 we conclude the paper.

2 An Exact Model for the No Hand-Offs Case

In this section we review briefly the single-orbit model proposed in [9]. This
model is used in the decomposition algorithm described in the following section.

Let us consider a single orbit of a constellation, and let us assume that
the position of the satellites is fixed in the sky, as in the case of geostationary
satellites. The analysis of such a system is simpler, since no calls are lost due to
hand-offs from one satellite to another, as when the satellites move with respect
to the users on the earth. This model is used in Section 4 to model both earth-
fixed and satellite-fixed systems with hand-offs.

Each up-and-down link (UDL) of a satellite has capacity to support up to
CUDL bidirectional calls, while each inter-satellite link (ISL) has capacity equal
to CISL bidirectional calls. We assume that call requests arrive at each satellite
according to a Poisson process, and that call holding times are exponentially
distributed. We now show how to compute blocking probabilities for the 3 satel-
lites in the single orbit of Figure 1. The analysis can be generalized to analyze
k > 3 satellites in a single orbit. For simplicity, we consider only shortest-path
routing, although the analysis can be applied to any fixed routing scheme.

Let nij be a random variable representing the number of active bidirectional
calls between satellite i and satellite j, 1 ≤ i, j ≤ 3, regardless of whether the
calls originated at satellite i or j. As an example, if n12 = 1, then there is one
call using a one-way ISL channel from satellite 1 to satellite 2 and a one-way
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ISL channel from satellite 2 to satellite 1. If n11 = 1, then there is a call between
a customer under satellite 1 and a customer also under satellite 1, and two
bidirectional UDL channels are used. Let λij (respectively, 1/µij) denote the
arrival rate (resp., mean holding time) of calls between satellites i and j. Then,
the three-satellite system in Figure 1 can be described by the Markov process:

n = (n11, n12, n13, n22, n23, n33) (1)

Let 1ij denote a vector with zeros for all random variables except random variable
nij which is 1. The state transition rates for the Markov process are given by:

r(n, n+ 1ij) = λij ∀ i, j (2)

r(n, n− 1ij) = nij µij ∀ i, j, nij > 0 (3)

The transition (2) is due to the arrival of a call between satellites i and j, while
the transition (3) is due to the termination of a call between satellites i and j.

Let Ω denote the state space for this Markov process. Due to the fact that
some of the calls share common up-and-down and inter-satellite links, the fol-
lowing constraints are imposed on Ω:

2n11 + n12 + n13 ≤ CUDL (4)

n12 + 2n22 + n23 ≤ CUDL (5)

n13 + n23 + 2n33 ≤ CUDL (6)

n12 ≤ CISL (7)

n13 ≤ CISL (8)

n23 ≤ CISL (9)

Constraint (4) ensures that the number of calls originating (equivalently,
terminating) at satellite 1 is at most equal to the capacity of the up-and-down
link of that satellite. Note that a call that originates and terminates within the
footprint of satellite 1 captures two channels, thus the term 2n11 in constraint (4).
Constraints (5) and (6) are similar to (4), but correspond to satellites 2 and 3,
respectively. Finally, constraints (7)-(9) ensure that the number of calls using
the link between two satellites is at most equal to the capacity of that link.

It is straightforward to verify that the Markov process for the three-satellite
system shown in Figure 1 has a closed-form solution which is given by:

P (n) = P (n11, n12, n13, n22, n23, n33) =
1
G

ρn11
11

n11!
ρn12
12

n12!
ρn13
13

n13!
ρn22
22

n22!
ρn23
23

n23!
ρn33
33

n33!
, n ∈ Ω

(10)
where G is the normalizing constant and ρij = λij/µij , i, j = 1, 2, 3, is the
offered load of calls from satellite i to satellite j. As we can see, the solution is
the product of six terms of the form ρ

nij

ij /nij !, i, j = 1, 2, 3, each corresponding
to one of the six different source/destination pair of calls. Therefore, it is easily
generalizable to a k-satellite system, k > 3.
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An alternative way is to regard this Markov process as describing a network
of six M/M/K/K queues, one for each source/destination pair of calls between
the three satellites. Since the satellites do not move, there are no hand-offs,
and as a consequence customers do not move from one queue to another. Now,
the probability that there are m customers in an M/M/K/K queue is given by
the familiar expression (ρm/m!)/

(∑K
l=0 ρ

l/l!
)
, and therefore, the probability

that there are (n11, n12, n13, n22, n23, n33) customers in the six queues is given
by (10). Unlike previous studies, our model takes into account the fact that
the six M/M/K/K queues are not independent, since the number of customers
accepted in each M/M/K/K queue depends on the number of customers in other
queues, as described by constraints (4)-(9).

Of course, the main concern in any product-form solution is the computation
of the normalizing constant:

G =
∑
n∈Ω

ρn11
11

n11!
ρn12
12

n12!
ρn13
13

n13!
ρn22
22

n22!
ρn23
23

n23!
ρn33
33

n33!
(11)

where the sum is taken over all vectors n that satisfy constraints (4) through (9).
A method to compute G is presented in [9]. Numerical experiments with this
method indicate that it is limited to k = 5 satellites. That is, it takes an amount
of time in the order of a few minutes to compute the normalizing constant G for 5
satellites. Thus, a different method is needed for analyzing realistic constellations
of LEO satellites.

3 A Decomposition Algorithm for Satellite Constellations

We now present a decomposition method for calculating call blocking probabili-
ties in a constellation of satellites. The constellation is decomposed into a series
of sub-systems each consisting of at most three satellites. Each sub-system is
analyzed separately using the exact solution described in the previous section.
The results obtained from the sub-systems are then combined together using an
iterative scheme in order to obtain a solution to the constellation as a whole.

As in the previous section, we will assume for the moment that the constella-
tion of satellites is fixed over the earth, as in the case of geostationary satellites.
That is, calls are not handed off from one satellite to another, and the call block-
ing probability due to hand-offs is zero. Therefore, the decomposition algorithm
presented in this section can only calculate the call blocking probabilities of new
calls. In the following section, we extend the algorithm to also calculate the call
blocking probabilities due to hand-offs.

In order to explain how the decomposition algorithm works, let us consider
a 16-satellite constellation with 4 orbits and 4 satellites per orbit, as shown in
Figure 2. In the configuration of satellites that we study, we do not take into
account the presence of the seam or the fact that satellites near the north and
south pole have some of their links shut down. These two cases can be easily taken
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Fig. 2. 16-satellite constellation
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Fig. 3. Augmented sub-systems for constellation
of Figure 2

onto account by simply changing the routing paths between pairs of satellites
that are affected by the lack of links over the seam and near the poles.

The constellation is fixed over the earth, and we assume that each satellite
in the first row has an intra-plane ISL to the satellite on the same orbit located
in the bottom row. For instance satellite 1 communicates with satellite 4 via an
intra-plane ISL. Likewise, satellites 5 and 8 are connected by an intra-plane ISL,
and so on. Also, each satellite in the first column communicates via an inter-
plane ISL with the satellite on the fourth column that is located on the same
row. For instance, satellite 1 has an inter-plane link to satellite 13, and so on.

For the purposes of our decomposition algorithm, each orbit is divided into
two sub-systems (shown in Figure 3). For instance, orbit 1 is divided into sub-
system 1, consisting of satellites 1 and 2, and sub-system 2, consisting of satellites
3 and 4. Orbit 2 is divided into sub-system 3, consisting of satellites 5 and 6,
and sub-system 4, consisting of satellites 7 and 8; likewise for orbits 3 and 4.
Similarly, each row of four satellites in Figure 2 is divided into two sub-systems.
The 16-satellite constellation is thus divided into 16 sub-systems as shown in
Figure 3.

In order to analyze sub-system 1 in isolation, we need to have some informa-
tion from other sub-systems. Specifically, we need to know the probability that
a call originating at a satellite in sub-system 1 and terminating at a satellite in
sub-system r, where r > 1, will be blocked due to lack of capacity in a link of
any sub-system that it has to traverse, including sub-system r. Also, we need
to know the number of calls that originate at other sub-systems and terminate
in sub-system 1. Similar information is needed in order to analyze any other
sub-system.

In view of this, each sub-system within an orbit is augmented to include
two fictitious satellites, referred to as N and S. These two satellites are used
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to represent the aggregate traffic generated by other satellites and which flows
into (or out of) the sub-system along links north or south of the sub-system,
respectively. For instance, sub-system 1, shown in Figure 3, is augmented with
fictitious satellites N1 and S1. A call originating at satellite i, i = 1, 2 and
terminating at satellite j, j = 3, 4 are represented in our sub-system by a call
from satellite i to one of the fictitious satellites N1 or S1. Depending upon i and
j, this call may be routed differently. In our augmented sub-system, a call will
be routed to S1 if the shortest-path route passes through satellites south of the
sub-system. A call will be routed to N1 if the shortest-path route goes towards
the north. In other words, satellite N1 (respectively, S1) in the augmented sub-
system is the destination satellite for all calls that originate in satellite i of
sub-system 1 and are routed to satellite j located outside that sub-system in the
clockwise (respectively counter-clockwise) direction.

This augmented sub-system captures the traffic outside the sub-system that
travels on the same orbit, i.e., on intra-plane ISLs. In addition, we also have
to consider traffic that uses inter-plane ISLs. For instance, let us consider again
sub-system 1. A call originating at satellite 1 and terminating at satellite 6
will use the intra-plane ISL to satellite 2 and then the inter-plane ISL between
satellites 2 and 6. In order to account for traffic traversing inter-plane ISLs, we
also decompose each row of satellites into two sub-systems, each consisting of
two satellites. For instance, the first row of satellites is divided into sub-system
9, consisting of satellites 1 and 5, and sub-system 10, consisting of satellites 9
and 13. The 16-satellite constellation is thus divided into an additional 8 sub-
systems, as shown in Figure 3. Each sub-system is augmented to include two
fictitious satellites, referred to as E and W . As before, the fictitious E and W
satellites are used to represent the aggregate traffic generated by other satellites
and which flows into (or out of) the sub-system along links east or west of the
sub-system, respectively. For instance, a call originating at say satellite i, i = 1, 5,
and terminating at satellite j, j = 9, 13, will be represented in our sub-system 9
as a call from i to either E1 or W1, depending upon the shortest-path route of
the call. As another example, consider a call between satellites 5 and 11. Using
shortest-path routing, this call is routed through satellites 9 and 10. Within the
augmented sub-system 9 this particular is represented as a call between satellite
5 and fictitious satellite E1.

In order to analyze the augmented sub-systems in Figure 3, we introduce the
effective arrival rates λ̂ij , including rates λ̂i,N ,λ̂i,S (or λ̂i,E , λ̂i,W ), within each
sub-system. The effective rate λ̂ij captures the rate of calls between satellite i
and satellite j, as seen from within this sub-system. In particular, the effective
rate λ̂i,N (or any other rate involving any of the other fictitious satellites S, E or
W ) captures the rate of calls originating at satellite i and leaving the sub-system
over an ISL that goes through the fictitious satellite N .

Based on this decomposition, computing the blocking probability of a call
depends on whether or not the originating and terminating satellites of the call
are within the same sub-system. In the former case, the blocking probability
is computed directly as a byproduct of solving the sub-system in isolation. In
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the latter case, the blocking probability is computed by taking into account all
the sub-systems in the call’s path. Returning to Figure 3, a call originating at
satellite 1 and terminating at satellite 6 will be analyzed in two steps. At the
first step, it is a call within sub-system 1 between satellites 1 and 2. This call
then leaves this sub-system from satellite 2 and it is analyzed using sub-system
11. From the point of view of sub-system 11, this is a call between satellites 2
and 6. As another example, analyzing a call between satellite 1 and satellite 8
involves three sub-systems. Within sub-system 1, it is viewed as a call between
satellite 1 and (fictitious) satellite N1. In sub-system 2, it is considered a call
between (fictitious) satellite S2 and satellite 4. Finally, in sub-system 15, it is a
call between satellites 4 and 8.

We now illustrate the decomposition algorithm using the 16 satellite con-
stellation shown in Figure 3. Initially, we solve sub-system 1 in isolation. This
system in isolation is described by the following Markov process:

n = (n11, n12, n1N1 , n1S1 , n22, n2N1 , n2S1) (12)

We solve sub-system 1 exactly using the approach described in the previous
section. The arrival rates used in the solution are the effective arrival rates
λ̂1,N1, λ̂1,S1, λ̂1,2, λ̂2,N1, and λ̂2,S1. Efective rate λ̂1,N1 is obtained using expres-
sion (13); the other effective rates (for this or other sub-systems) are obtained
from similar expressions which can be found in [10].

λ̂1,N1 = (1 − p4,S2)λ1,4 + (1 − p4,S2)(1 − p4,8)λ1,8 + (1 − p4,S2)(1 − p4,8)
×(1 − pW8,12)λ1,12 + (1 − p4,S2)(1 − p4,E4)(1 − pW8,16)λ1,16 (13)

We now explain expression (13) in more detail. Note that, in this expression,
quantities pij represent the probability that a call between two satellites traveling
through the path segment (i, j) in another sub-system will be blocked due to the
lack of capacity in that segment.

Consider expression (13) for effective rate λ̂1,N1 which represents the rate of
calls originating at satellite 1 and leaving the sub-system over ISL 1-4 in Figure 2.
Because of the shortest path routing we consider here, these are calls terminating
at satellites 4, 8, 12, and 16. Consequently, the right-hand side of (13) consists
of four terms, one for calls terminating at each of these four satellites. The first
term in (13), (1− p4,S2)λ1,4, represents the effective arrival rate of calls between
satellites 1 and 4, as seen by sub-system 1. This effective rate represents the
fraction of calls between satellites 1 and 4 not blocked in sub-system 2 between
satellites 4 and S2, and is given by the product of the arrival rate λ1,4 of new
calls between satellites 1 and 4 times the probability that a call is not blocked
between satellite 4 and (fictitious) satellite S2) in sub-system 2. The second term
is obtained similarly by accounting for all the sub-systems in the shortest path
between satellites 1 and 8. A call between satellites 1 and 8 may be blocked
either in sub-system 2, between satellites 4 and S2, or in sub-system 15, between
satellites 4 and 8. Therefore, the effective arrival rate for a call between satellites
1 and 8 as seen by sub-system 1 is (1−p4,S2)(1−p4,8)λ1,8. This expression gives
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us the proportion of calls that are not blocked in sub-systems 2 and 15. The
third term (1−p4,S2)(1−p4,8)(1−pW8,12)λ1,12 provides the effective arrival rate
between satellites 1 and 12. This expression gives us the proportion of the traffic
that is not blocked between satellites 4 and S2, 4 and 8, and W8 and 12. The
last term of λ1,N1 is similar with the previous term except it accounts for the
sub-systems along the shortest path to satellite 16.

Equations similar to (13) are used to solve sub-system 1, as well as other sub-
systems, in isolation. The values of quantities pij are updated at each iteration,
and represent our best estimate for the value of the corresponding blocking
probability at the beginning of the iteration. For the first iteration, we use p(0)ij =
0, for all i and j. During the h-th iteration, each sub-system is solved in isolation
using the blocking probabilities p(h−1)

ij computed during the previous iteration.

As a result of the solution to the sub-system a new set of values p(h)ij for the
blocking probabilities are obtained, and these are used in the next iteration.
This iterative procedure continues until the blocking probabilities converge.

Any constellation with a large number of satellites can be decomposed in a
similar manner into a number of sub-systems, each of 3 or fewer satellites.

4 Modeling Hand-Offs

4.1 Earth-Fixed Coverage

In a LEO satellite constellation with earth-fixed coverage, time is divided in
intervals of length T such that, during a given interval, each satellite serves a
certain cell by continuously redirecting its beams. At the end of each interval,
i.e., every T time units, all satellites simultaneously redirect their beams to serve
the next footprint along their orbit, and they also hand-off currently served calls
to the next satellite in the orbit. Therefore, hand-off events are periodic with
a period of T time units, and hand-offs take place in bulk at the end of each
period. There is no call blocking due to hand-offs, since, at each hand-off event
a satellite passes its calls to the one following it and simply inherits the calls
of the satellite ahead of it. Within each period T , the system can be modeled
as one with no hand-offs. Given that the period T is equal to the orbit period
(approximately 100 minutes) divided by the number of satellites at each orbit,
we can assume that the system reaches steady state within the period, and thus,
the initial conditions (i.e., the number of calls inherited by each satellite at the
beginning of the period) do not affect its behavior. Furthermore, from the point
of view of an observer on the earth, this system appears to be as if the satellites
are permanently fixed over their footprints. Hence, we can use the decomposition
algorithm presented above to analyze this system.

4.2 Satellite-Fixed Coverage

Consider now satellite-fixed cell coverage. As a satellite moves, its footprint on
the earth (the cell served by the satellite) also moves with it. As customers move
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Satellite i

Time∆ t

∆ L

Hand-off area, ∆Α

Fig. 4. Calculation of the hand-off probability

out of the footprint area of a satellite, their calls are handed off to the satellite
following it from behind. In order to model hand-offs in this case, we make the
assumption that potential customers are uniformly distributed over the earth.
Clearly, this assumption is an approximation.

Let A denote the area of a satellite’s footprint and v denote a satellite’s
speed. As a satellite moves around the earth, within a time interval of length
∆t, its footprint will move a distance of∆L, as shown in Figure 4. Calls involving
customers located in the part of the original footprint of area ∆A (the hand-off
area) that is no longer served by the satellite are handed off to the satellite
following it. Let ∆A = Aβ∆L, where β depends on the shape of the footprint.
Because of the assumption that active customers are uniformly distributed over
the satellite’s footprint, the probability q that a customer will be handed off to
the next satellite along the sky within a time interval of length ∆t is

q =
∆A

A
= β∆L = βv∆t (14)

Define α = βv. Then, when there are n customers served by a satellite, the rate
of hand-offs to the satellite following it will be αn.

Single Sub-System. Let us first return to the 3-satellite orbit (see Figure 1)
and introduce hand-offs. This system can be described by a continuous-time
Markov process with the same number of random variables as the no-hand-offs
model of Section 2 (i.e., n11, · · · , n33), the same transition rates (2) and (3), but
with a number of additional transition rates to account for hand-offs. We will
now derive the transition rates due to hand-offs.

Consider calls between a customer served by satellite 1 and a customer served
by satellite 2. There are n12 such calls serving 2n12 customers: n12 customers on
the footprint of satellite 1 and n12 on the footprint of satellite 2. Consider a call
between customer A and customer B, served by satellites 1 and 2, respectively.
The probability that customer A will be in the hand-off area of satellite 1 but B
will not be in the hand-off area of satellite 2 is q(1 − q) = q − q2. From (14), we
have that lim∆t→0

q2

∆t = 0, so the rate at which these calls experience a hand-off
from satellite 1 to satellite 3 that follows it is αn12. We have:

r(n, n− 112 + 123) = αn12, n12 > 0 (15)
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Similarly, the probability that customer B will be in the hand-off area of satel-
lite 2 but A will not be in the hand-off area of satellite 1 is q(1−q) = q−q2. Thus,
the rate at which these calls experience a hand-off from satellite 2 to satellite 1
that follows it is again αn12:

r(n, n− 112 + 111) = αn12, n12 > 0 (16)

On the other hand, the probability that both customers A and B are in the
hand-off area of their respective satellites is q2, which, from (14) is o(∆t), and
thus simultaneous hand-offs are not allowed.

The transition rates involving the other four random variables in the state
description (1) can be derived using similar arguments, and can be found in [10].

From the queueing point of view, this system is a queueing network of
M/M/K/K queues as described in Section 2, where customers are allowed to
move between queues. This queueing network has a product-form solution sim-
ilar to (10). Let γij denote the total arrival rate of calls between satellites i
and j, including new calls (at a rate of λij) and hand-off calls (at an appropriate
rate). The values of γij can be obtained by solving the traffic equations for the
queueing network. Let νijnij be the departure rate when there are nij of these
calls, including call termination (at a rate of µijnij) and call hand-off (at a rate
of 2αnij). Define sij = γij/νij . The solution for this queueing network is:

P (n) = P (n11, n12, n13, n22, n23, n33) =
1
G

sn11
11

n11!
sn12
12

n12!
sn13
13

n13!
sn22
22

n22!
sn23
23

n23!
sn33
33

n33!
(17)

which is identical to (10) with sij in place of ρij . Therefore, the exact solution
od Section 2 is applicable to this new queueing network as well.

Constellation of Satellites. To analyze a constellation of satellites with hand-
offs, we use the algorithm presented in Section 3. The main difference is that,
instead of using the arrival and departure rates for new calls, λij and µij , re-
spectively, we use the rates γij and νij which account for both new and hand-off
calls. The latter are obtained by solving the traffic equations for the queueing
network. Therefore, our analysis of a constellation follows the steps below:

1. The constellation is modeled as a queueing network of M/M/K/K queues,
where each queue represents the number of calls between a pair of satellites
(i, j) (no hand-offs case). A number of constraints, similar to (4)-(9), are
imposed to account for the fact that some calls share common links.

2. In order to model hand-offs, we introduce additional transitions of customers
moving from one queue to another.

3. We solve exactly the traffic equations of the queueing network resulting from
Step 2 to obtain the new arrival rates.

4. We apply the decomposition algorithm described in Section 3 using the ar-
rival rates from Step 3.

Solving the traffic equations is computationally expensive, taking time O(N3),
where N is the number of states in the Markov process. The number N of
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Fig. 6. Call blocking probabilities for 16
satellites with hand-off, locality pattern

states, in turn, is exponential in the number K of satellites. To decrease the
complexity, we have developed an approximate way to solve the traffic equations
in a distributed manner; a detailed description can be found in [10].

5 Numerical Results

In this section we verify the accuracy of the decomposition algorithm by com-
paring to simulation results. 95% confidence intervals were estimated by the
method of replications. The number of replications is 30, with each simulation
run lasting until each source/destination pair of call has at least 15,000 arrivals.
For the approximate results, the decomposition algorithm terminates when all
call blocking probability values have converged within 10−6.

We obtained results using three different traffic patterns: a uniform traffic
pattern, one based on the notion of traffic locality, and a hot spot pattern (for
details, refer to [10]). We consider a constellation of 16 satellites with four orbits
and four satellites per orbit as shown in Figure 2. Each satellite has four ISLs;
two within the same orbit and two with neighboring orbits.

Figures 5-7 plot the call blocking probability (for new and hand-off calls)
against the capacity CUDL of up-and-down links, when the arrival rate λ = 5
and the capacity of inter-satellite links CISL = 10, for the three traffic pattern.
We note that there is a good agreement between the analytical results and the
simulation. Overall, the analytical curves track the simulation curves accurately,
indicating that the decomposition algorithm can be used to predict the call
blocking performance of a LEO satellite constellation accurately and efficiently.

6 Concluding Remarks

We have presented an analytical model for computing call blocking probabilities
in LEO satellite networks. We have developed an algorithm for decomposing the
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Fig. 7. Call blocking probabilities for 16 satellites with hand-off, hot-spot pattern

constellation into smaller sub-systems, each of which is solved in isolation ex-
actly. The individual solutions are combined using an iterative scheme. We have
also shown how our approach can capture blocking due to hand-offs for both
satellite-fixed and earth-fixed coverage. We have demonstrated through numeri-
cal examples that the analytical results are in good agreement with simulation.
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