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Abstract We consider networks offering tiered services
and corresponding price structures, a model that has
become prevalent in practice. We develop an economic
model for such networks and make contributions in
two important areas. First, we formulate the problem
of selecting the service tiers from three perspectives:
one that considers the users’ interests only, one that
considers only the service provider’s interests, and one
that considers both simultaneously, i.e., the interests of
society as a whole. We also present an approximate
yet accurate and efficient solution approach for tackling
these nonlinear programming problems. Given the set
of (near-) optimal service tiers, we then employ game-
theoretic techniques to find an optimal price for each
service tier that strikes a balance between the con-
flicting objectives of users and service provider. This
work provides a theoretical framework for reasoning
about and pricing Internet tiered services, as well as
a practical toolset for network providers to develop
customized menus of service offerings. Our results also
indicate that tiering solutions currently adopted by
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1 Introduction

Internet service providers (ISPs) have introduced sev-
eral forms of a tiered service, in which users may se-
lect from a small set of tiers that offer progressively
higher levels of service with a corresponding increase in
price. Multitiered price systems are prevalent for both
business and residential Internet access, and have been
employed in various forms regardless of whether the
underlying pricing scheme is capacity-based (in which
the subscription fee is determined solely by the user’s
access speed) or usage-sensitive (in which price is a
function of the actual bytes transferred over a certain
time period, usually 1 month).

If designed and applied appropriately, multitiered
pricing schemes have the potential to be a catalyst for
Internet service innovation and penetration. On the
provider side, tiered structures can be an effective tool
for ISPs to optimize and specialize their offerings so
as to capitalize on the increasing sophistication and
requirements of various segments of Internet users,
as well as to differentiate themselves from the com-
petition. On the user side, tiered pricing is likely to
spur adoption by providing a wide menu of customized
services from which users may select based on needs
and affordability.
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To realize this potential, it is crucial that both the ser-
vice tiers and the corresponding prices be determined
in a manner that simultaneously takes into account the
(usually conflicting) objectives of users and providers.
In current practice, however, there is considerable lack
of transparency in how ISPs set their tiered price struc-
tures, and it is unclear whether the perspective of users
is even considered in the process. For instance, certain
service tiers for business Internet access are based on
the bandwidth hierarchy of the underlying network
infrastructure (e.g., DS-1, OC-3, etc.). While this is
a natural arrangement for the service provider, it is
unlikely that hierarchical rates designed decades ago
for voice traffic would be a good match for today’s
business data applications. The ADSL tiers available
from various providers, on the other hand, appear to
have been determined in some ad-hoc manner; similar
observations apply to the usage-sensitive tiered price
structure employed by one cable ISP for a recent pilot
program [6], which sets the tiers at 5, 10, 20, and 40 GB
of monthly download traffic. While tier values that
are round numbers may be an appropriate choice for
marketing purposes, the relationship between these ex-
ponentially increasing levels of service (and their price)
and the usage patterns (and willingness or ability to
pay) of the population of potential subscribers is open
to debate.

In this work, we develop an economic model for
networks with a tiered service and price structure and
make contributions in two important areas. First, we
present nonlinear programming formulations for the
problem of selecting the service tiers from three per-
spectives: one that considers the users’ interests only,
one that considers only the service provider’s interests,
and one that considers both simultaneously, i.e., the in-
terests of society as a whole. We also devise an efficient
solution methodology by developing a dynamic pro-
gramming algorithm to optimally solve an approximate
formulation of the original service tier selection prob-
lem. Given the set of (near-) optimal service tiers, we
then employ game-theoretic techniques based on Nash
bargaining to find an optimal price for each service tier
that strikes a balance between the conflicting objectives
of users and service provider. Our work provides a
theoretical framework for reasoning about and pricing
Internet tiered services, as well as a practical toolset
for network providers to develop customized menus of
service offerings that cater to user needs while ensuring
that both parties are satisfied.

The rest of the paper is organized as follows. In
Section 2, we describe the tiered-service network we
consider in this study, along with related applications.

In Section 3, we introduce an economic model for
tiered-service networks that takes into account the
user’s perspective, the provider’s perspective, or both.
We also formulate and solve the corresponding prob-
lems for selecting the set of service tiers optimally. In
Section 4, we use Nash bargaining theory to determine
an optimal price for each of the service tiers. We
present numerical results in Section 5, and we point
to extensions of our work in Section 6. We discuss
related work in Section 7, and we conclude the paper
in Section 8.

2 Tiered-service networks

We consider a network that offers a service character-
ized by a single parameter, e.g., the bandwidth of the
user’s access link or the amount of traffic generated by
the user, and charges users on the basis of the amount of
service they receive. Users may request any amount of
service depending on their needs and their willingness
or ability to pay the corresponding service fee. We
assume that the distribution of the size x of user service
requests is known; such a distribution may be obtained
empirically or extrapolated from observed user behav-
ior and application requirements. Let f (x) and F(x) be
the probability density function (pdf) and cumulative
distribution function (cdf), respectively, representing
the population of user requests. The pdf and cdf are
defined in the interval [xmin, xmax], where xmin and xmax

correspond to the minimum and maximum, respec-
tively, amount of service requested by any user.

The network offers K levels (tiers) of service, where
typically, K is a small integer, much smaller than the
number N of network users (i.e., K � N). We define
Z =< z1, z2, · · · , zK > as the vector of service tiers
offered by the network provider; without loss of gen-
erality, we assume that the service tiers are distinct and
are labeled such that z1 < z2 < · · · < zK. For notational
convenience, we also define the “null” service tier
z0 = 0.

With tiered service, a user with service request
x, xmin ≤ x ≤ xmax subscribes to service tier z j such that
z j−1 < x ≤ z j. Figure 1 shows a sample mapping of
service requests to a vector of K = 6 service tiers, under
which all users with requests x ∈ (z j−1, z j] subscribe to
service tier z j, j = 1, · · · , K. Note also that, in order to
accommodate all user requests, the highest tier must
be such that zK = xmax, an assumption we will make
throughout this work.
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Fig. 1 Sample mapping of service requests to service tiers

The network provider incurs a cost for the service it
provides, and consequently, it will be inclined to select
the service tiers, and the corresponding price to charge,
so as to recoup its costs (and make a profit). On the
other hand, each user subscribes to a service that is at
least as good as the one requested, but the additional
value, if any, that the user receives may be offset by
the higher cost of the service. Our aim is to apply
economic theory to capture analytically these tradeoffs,
and to develop techniques to select the service tiers and
prices in a manner that accounts for both the users’ and
providers’ perspectives.

To develop an economic model for tiered-service
networks, we assume the existence of three non-
decreasing functions of service x, as shown in Fig. 2.
The utility function, U(x), is a measure of the value that
users receive from the service, and it stands for their
willingness to pay for the service. The cost function,

US$

y

x

Utility U(x)

Cost C(x)

Social surplus

Price P(x)
User surplus

Service provider surplus

Service

Fig. 2 Utility, cost, and price functions

C(x), represents the cost incurred by the provider for
offering the service. Finally, the price function, P(x),
represents the amount that the service provider charges
for the service. Figure 2 shows that U(x) lies above P(x)

(otherwise, users would not be willing to pay for the
service), and in turn, P(x) lies above C(x) (otherwise,
providers would not be inclined to offer the service).
We make the reasonable assumption that utility, cost,
and price are all expressed in the same units (e.g.,
US$). Note that utility and cost typically depend only
on the user and service provider, respectively, but that
price is the result of market dynamics and the relative
bargaining power of users and service providers.

In our model, we make two fundamental assump-
tions. First, we consider a homogeneous user popula-
tion in the sense that all users are characterized by the
same utility function U(x); the case of heterogeneous
users is the subject of ongoing research in our group.
Second, we assume that any user with demand x that
is mapped to some tier z j will subscribe to this tier as
long as the price is less than its willingness to pay as
represented by the utility value U(z j).

The tiered service model we consider in this paper
arises naturally under both pricing schemes, capacity-
based or usage-sensitive, that are prevalent for Internet
services [8].

Capacity-based pricing Capacity-based schemes relate
pricing to usage by setting a price based on the band-
width or speed of the user’s connection link. This is
accomplished by charging for the configuration (i.e.,
bandwidth) of the connection, but not the actual bits
sent or received. Capacity-based pricing is the prevail-
ing pricing policy for residential broadband Internet
access services. This scheme relates to our tiered service
model as follows: the service is characterized by the
amount of access bandwidth; each of the service tiers,
z1, · · · , zK, corresponds to a certain access speed, and
users are charged based on the tier to which they have
subscribed. Currently, the offered tiers are either tied
to the bandwidth hierarchy of the underlying network
infrastructure (e.g., T1, T3, or higher for virtual private
networks) or are determined in some ad-hoc manner
(e.g., the various ADSL tiers).

Usage-sensitive pricing Usage-sensitive pricing poli-
cies charge users for the actual amount of traffic they
generate. In current practice, ISPs charge a customer
(e.g., a video-on-demand provider) based on their
traffic volume using the 95-th percentile rule [7, 21].
Specifically, the ISP measures the user’s traffic volume
over 5-min intervals during each billing period (e.g.,
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1 month), and charges the user based on the 95-th per-
centile value among these measured values. Typically,
ISPs have a tiered pricing structure [21] in which each
of the service tiers, z1, · · · , zK, corresponds to a certain
traffic volume, and higher tiers are mapped to higher
prices. Such a structure can be mapped to our tiered
service model by considering a customer with a 95-
th percentile value x such that z j−1 < x ≤ z j as having
“subscribed” to tier z j and charging the customer ac-
cordingly.1

3 Economic model for sizing of service tiers

In this section, we use concepts from economics to
describe the relationship between users and service
providers, and we propose optimization problems for
selecting the service tiers. We also illustrate how to
solve these problems to obtain a set of (near-) optimal
tiers. In the following section, we apply Nash bargaining
theory [12, 14] to determine optimal pricing strategies
for this fixed (near-optimal) set of tiers.

Consider now the demand–supply relationship be-
tween the users and network service providers. On the
one hand, users want to maximize the utility they obtain
from the service while keeping the fee they have to pay
to the service provider as low as possible; in economic
terms, users want to maximize the user surplus [1, 4],
defined as the difference between the utility they obtain
from the service and the price they have to pay for it.
On the other hand, the network providers’ objective is
to charge a high fee so as to offset the cost of offering
the service and make a profit; in other words, service
providers want to maximize the service provider sur-
plus [1, 4], defined as the difference between price and
cost. The concepts of user surplus and service provider
surplus are illustrated in Fig. 2.

From the point of view of the society as a whole,
it is preferable to maximize the overall social welfare,
defined as the sum of the user surplus plus the provider
surplus (see also Fig. 2). We will refer to the social
welfare as social surplus [1, 4]. Once the maximum
social surplus has been determined, the users and ser-
vice providers may negotiate its division into user and

1Note that, with capacity-based pricing, the tier (e.g., access
speed) to which a user subscribes does not change over time
(except, for instance, when a user upgrades to a higher speed), but
with usage-sensitive pricing, a user may be charged according to
a different tier every billing period, i.e., depending on the actual
traffic volume generated during each period. Nevertheless, this
distinction does not affect the economic model we present in the
next section.

service provider surpluses through bargaining, as we
explain in the next section.

Let us define the user surplus Susr(x) = U(x) − P(x),
the provider surplus Spr(x) = P(x) − C(x), and the so-
cial surplus Ssoc(x) = U(x) − C(x). In the tiered-service
network under consideration, the problems of maximiz-
ing the surplus of users, service providers, or society
amount to appropriately selecting the set of service tiers
to be offered, as we discuss next.

3.1 Maximization of expected surplus

Let S(x) be the surplus function (i.e., one of
Susr(x), Spr(x), or Ssoc(x), defined above), and suppose
for the moment that the vector Z =< z1, · · · , zK =
xmax > of K service tiers is given. In this case (refer
also to Fig. 1), all users with requests in the interval2

(z j−1, z j] subscribe to tier z j, incurring a surplus of
S(z j), j = 1, · · · , K. Recalling that f (x) and F(x) are
the pdf and cdf, respectively, of user requests, the ex-
pected surplus S̄(z1, · · · , zK) for the given service tier
vector Z can be expressed as:

S̄(z1, · · · , zK) =
K∑

j=1

(∫ z j

z j−1

S(z j) f (x)dx

)

=
K∑

j=1

(
S(z j)

∫ z j

z j−1

f (x)dx

)

=
K∑

j=1

(
S(z j)

(
F(z j) − F(z j−1)

))
. (1)

Consider now the problem of optimally selecting the
service tiers from the users’ point of view. Based on
our earlier discussion, the objective of each network
user is to maximize its surplus. Considering all the users
in the network as a whole, the objective is to select
the set of service tiers so as to maximize the expected
aggregate user surplus, i.e., the weighted sum of the
individual user surpluses in expression 1 with Susr in
place of S(x). Similarly, the goal of the service provider
is to maximize its expected aggregate surplus; while
considering the welfare of the society (i.e., both users
and providers), the objective would be to maximize
the expected aggregate social surplus. These last two
objectives are obtained by using Spr(x) and Ssoc(x),
respectively, in place of S(x) in Eq. 1.

2Note that the leftmost interval is (z0, z1], where z0 = 0 is the
“null” service tier we defined earlier. Since F(z0) = 0, the sum-
mation in expression 1 is correctly defined for all service tier
intervals.
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These three optimization problems can be formally
expressed as instances of the following problem, which
we will refer to as the maximization of expected sur-
plus (MAX-ES) problem. Note that the objective func-
tion Eq. 2 is nonlinear with respect to the variables
z1, · · · , zK; hence, MAX-ES is a nonlinear program-
ming problem.

Problem 3.1 (MAX-ES) Given the cdf F(x) of user
requests, an integer number K of service tiers, and a
surplus function S(x), find a service tier vector Z =
< z1, · · · , zK > that maximizes the objective function
(expected surplus):

S̄(z1, · · · , zK) =
K∑

j=1

(
S(z j)

(
F(z j) − F(z j−1)

))
(2)

subject to the constraints:

xmin < z1 < z2 < · · · < zK = xmax. (3)

Let us assume for the moment that an optimal so-
lution to MAX-ES can be obtained; we will discuss
shortly how to find such a solution. Consider the op-
timal solution obtained by solving the MAX-ES prob-
lem from the perspective of users or providers (i.e.,
by using the user Susr(x) or provider Spr(x) surplus
function in place of S(x), respectively). Such a solution
is unlikely to be of practical value, for two reasons.
First, it assumes that users and service providers may
select the service tiers optimally based only on their
own interests. In reality, a service tier vector that is
optimal for the users may not be acceptable to the
service provider, and vice versa. Therefore, it is im-
portant to obtain a jointly optimal solution that takes
into account the perspectives of both users and service
providers. Second, both the user and provider surplus
functions assume the existence of a pricing function
P(x). In general, the price function is the result of
marketplace dynamics, including negotiation between
users and service providers; hence, it may not be known
in advance.

On the other hand, the social surplus function Ssoc(x)

depends only on the cost and utility functions, which are
generally known in advance. Therefore, considering the
welfare of the society as a whole overcomes the above
difficulties since (1) it takes into account simultaneously
the interests of both users (through the utility function)
and providers (through the cost function), and (2) al-
lows us to determine the optimal service tier vector
without knowledge of the pricing function. Therefore,
for the remainder of this paper, we will consider the
MAX-ES problem from the society’s point of view

only; although, for simplicity, we will continue using
S(x) as the surplus function, the reader should keep
in mind that, from now on, we assume that S(x) =
Ssoc(x) = U(x) − C(x).

We also note that, from a practical point of view, the
provider is the entity that determines and advertises
the service tier and price structure. However, as our
discussion above implies, the fact that the provider fixes
the tiers does not necessarily imply that it should do this
unilaterally without taking into account the users’ inter-
ests (through the use of an appropriate utility function
U(x) and demand function f (x) that can be estimated
using market surveys and relevant techniques). For
example, if a provider fixes the tiers and their prices at
levels that do not align well with user demands and/or
willingness to pay, users in a competitive environment
will opt for the services of another provider.

3.2 Solution through nonlinear programming

If the nonlinear objective function Eq. 2 of the MAX-
ES problem is concave, and since the constraints in Eq.
3 are convex, we may use the Karush–Kuhn–Tucker
(KKT) conditions to find the global maximum [2]. The
following lemma derives sufficient conditions for the
function Eq. 2 to be concave.

Lemma 3.1 If S(x) and F(x) are continuous and twice
differentiable in [xmin, xmax] and the two conditions

S′′(x)[F(x) − F(y)] + 2S′(x)F ′(x) + S(x)F ′′(x)< 0 (4)

− [S′(x)F ′(y)]2 − S(x)F ′′(y)

× {
S′′(x)[F(x)−F(y)] +2S′(x)F ′(x)+S(x)F ′′(x)

}
>0

(5)

are satisfied for all x, y ∈ [xmin, xmax] with y < x, then the
MAX-ES objective function S̄ is concave in the feasible
area xmin < z1 < · · · < zK−1 < zK = xmax.

Proof Define ω(x, y) = S(x)(F(x) − F(y)). We can
then rewrite Eq. 2 as:

S̄(z1, · · · , zK) =
K∑

j=1

ω(z j, z j−1). (6)

Since the sum of concave functions is also a concave
function, a sufficient condition for S̄ to be concave is
for ω to be concave in the feasible area xmin < y < x <

xmax.
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The Hessian of ω is the symmetric matrix

H =
(

h1,1 h1,2

h2,1 h2,2

)
, (7)

where

h1,1 = ∂2ω

∂x2 = S′′(x)[F(x) − F(y)] + 2S′(x)F ′(x)

+ S(x)F ′′(x)

h2,2 = ∂2ω

∂y2 = −S(x)F ′′(y)

h1,2 = h2,1 = ∂2ω

∂x∂y
= −S′(x)F ′(y)

If ω is continuous and has continuous first and second
derivatives, then it is concave if its Hessian is negative
definite in the feasible area x, y ∈ [xmin, xmax] with y <

x, or:

h1,1 < 0 and h1,1h2,2 − h2
1,2 > 0,

from which the two conditions Eqs. 4 and 5 follow. ��

In general, however, the objective function may not
be concave. For instance, an empirically obtained cdf
F(x) may not be continuous, in which case, the Hessian
matrix is not defined. In such cases, it may be possible
to formulate and solve approximate linear program-
ming formulations, or apply branch-and-bound tech-
niques [2]. One drawback of such solution methods
is that they have to be customized to the specific cdf
and surplus functions. More importantly, such methods
may need a large number of iterations, or they may get
trapped at a local maximum.

3.3 An efficient approximate solution

We now present an approximate yet efficient and accu-
rate method for solving general instances of the MAX-
ES problem. Rather than developing a sub-optimal
algorithm for solving MAX-ES directly, we take a dif-
ferent approach: we provide an approximate formula-
tion of MAX-ES that asymptotically converges to the
formulation in Eqs. 2–3, along with an algorithm that
solves this new problem optimally.

3.3.1 An approximate formulation of MAX-ES

We note that it is always possible to create a discrete
approximation of the pdf f (x), regardless of its form,
as illustrated in Fig. 3. In particular, we can choose an
integer M > K and partition the interval [xmin, xmax]

m

f(x)

x
min

x max
1 2 3 M... ...

x

Fig. 3 Forming a pdf approximation: The area under f (x) over
an interval is paired with the right-hand endpoint of the interval

into M intervals, each of length equal to xmax−xmin
M . The

right-hand endpoint of the m-th interval is em = xmin +
m(xmax−xmin)

M ; we associate with em a discrete point mass
density

Pm =
∫ em

em−1

f (x) dx . (8)

The M pairs {(em, Pm)} form the approximation of f (x).
We also define

Fm =
m∑

i=1

Pi , m = 1, · · · , M, (9)

so that the M pairs {(em, Fm)} form the approximation
of the cdf F(x).

In order to obtain an efficient solution to the MAX-
ES problem, we also impose the additional restriction
that the K service tiers may only take values from the
set {em} of the interval endpoints. Consequently, our
objective is to solve the following discrete version of
MAX-ES, which we will refer to as discrete-MAX-ES.

Problem 3.2 (Discrete-MAX-ES) Given the M-point
approximation {em, Pm} of the pdf of user requests,
an integer number K < M of service tiers, and a
surplus function S(x), find a service tier vector Z =
< z1, · · · , zK > that maximizes the objective function
(approximate expected surplus):

S̄(z1, · · · , zK) =
K∑

j=1

(
S(z j)

(
Fm j − Fm j−1

))
(10)

subject to the constraints:

z j = em j ∈ {em}, j = 1, · · · , K, m = 1, · · · , M (11)

z1 < z2 < · · · < zK = xmax. (12)
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Clearly, as M → ∞, the pdf approximation ap-
proaches the original pdf and discrete-MAX-ES re-
duces to the original MAX-ES problem.

3.3.2 Optimal solution to discrete-MAX-ES

Define �(m, k) as the optimal value of the objective
function Eq. 10 when the number of intervals is m
and the number of service tiers is k ≤ m, where para-
meter m represents the first such intervals among the
M discretized ones. Then, �(m, k) may be computed
recursively as follows:

�(m, 1) = S(em)Fm, m = 1, · · · , M (13)

�(m, k + 1) = max
q=k,··· ,m−1

{�(q, k) + S(em)(Fm − Fq)},

k = 1, · · · , K − 1; m = 2, · · · , M (14)

Expression 13 can be explained by observing that, if
there is only one tier of service, it must coincide with
the right-hand endpoint of the m-th (i.e., rightmost)
interval. The recursive expression Eq. 14 simply states
that, for k + 1 service tiers, the largest tier must coin-
cide with the right-hand endpoint of the m-th interval,
and the remaining k tiers must be optimally assigned to
the endpoints of any feasible interval q, k ≤ q ≤ m − 1.

The running time of the above dynamic program-
ming algorithm to obtain �(M, K) is O(KM2). Note
that �(M, K) is the value of an optimal solution to
the discrete-MAX-ES problem. The optimal solution
may not be unique, in which case, the algorithm will
randomly return one of the optimal ones. Since
discrete-MAX-ES is an approximate formulation of the
original MAX-ES problem, �(M, K) represents a solu-
tion close to the optimal solution to MAX-ES, regard-
less of the shape of the objective function Eq. 2. Clearly,
the better the pdf approximation, i.e., the larger the
value of M, the closer that �(M, K) will be to the
true optimal solution for a given pdf; the tradeoff is
an increase in running time. We have found that the
value of �(M, K) converges quickly as the value of M
approaches 50–100 for all the distribution functions we
have considered; thus, a (near-) optimal solution can be
computed efficiently for any instance of MAX-ES.

After solving the MAX-ES problem, we obtain a ser-
vice vector Z � =< z1, z2, · · · , zK > that maximizes the
social surplus and depends only on the utility and cost
functions provided by the users and network provider,
respectively. Next, we describe an approach to obtain-
ing the optimal price for each service tier in Z � in a

manner that strikes a balance between the conflicting
objectives of users and providers.

4 Optimal pricing based on Nash bargaining

Consider a service vector Z � =< z1, z2, . . . , zK > that
maximizes the social surplus. We are interested in find-
ing an appropriate price P(z j) for each service tier
z j, j = 1, · · · , K, so as to satisfy both the users and
service provider. Clearly, the price for each service tier
z j should be between the values of the cost and utility
functions at service level z j, as illustrated in Fig. 4.

In a free telecommunication market, the price for the
service is typically the result of a negotiation process
between the users and service providers. This negotia-
tion, or bargaining, process can be thought of as a game
during which each party attempts to maximize its own
surplus [12–14]; the outcome of the game is an optimal
price for the service that is mutually acceptable for
both parties. This game can be seen as an abstraction
of market dynamics, e.g., reflecting the users’ ability to
compare prices from various providers and competition
among providers. We also emphasize that our focus is
on a bargaining game that takes place once, after which
optimal prices are determined and fixed for a relatively
long time compared to typical flow durations. In other
words, we do not consider the scenario in which the
users and/or the network attempt to set prices on a
per-session basis (e.g., as in [8–10]), a scenario that
we do not believe is practical. We also note that the
negotiation between users and provider is implicit and

z

y

U(x)

C(x)

x
1 2 3 j j+1... K...

...
...

Negotiated prices

z z z z z

Fig. 4 Optimal price vector
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captured in the game through a bargaining parameter,
as explained shortly.

4.1 The single-tier case

Let us first consider the case K = 1, whereby the
provider offers a single service tier z1. For notational
convenience, in this section, we will simply use U , P,
and C, instead of U(z1), P(z1), and C(z1), respectively.

Let Phigh, Phigh ≤ U be the maximum price that the
users would accept as a satisfactory outcome of the
negotiating process (game). Similarly, let Plow, Plow ≥
C, be the minimum price that the service provider
would find acceptable. We use P1 to denote the price
that users pay for the service, and P2 the amount that
the provider receives for the service. In general, there
may exist a gap G between the P1 and P2; this gap is
referred to as transaction cost in economics. Without
loss of generality, in this work, we assume that the gap
G has a fixed value; clearly, if G = 0, then P1 = P2. We
also define Y1 = U − P1, and Y2 = P2 − C. Figure 5
illustrates the relationship among the game parameters
U , Phigh, Plow, C, P1, P2, and G.

The two parties, users and service provider, are
interested in dividing the net social surplus, i.e., the
social surplus minus the transaction cost, which, from
Fig. 5, is equal to (U − C − G). As we can see, the
net social surplus is the sum of Y1 and Y2. Y1 and
Y2 represent the shares of the good to be divided and
stand for the excess utility (or net surplus) of users
and provider, respectively. The objective is to find an
optimal division of the net social surplus such that both
parties feel satisfied. This optimization problem was
introduced by Nash [12, 14] as a cooperative bargaining
game, and is widely used in the literature for character-
izing labor negotiations and a range of other bargaining
situations [17].

Let β, 0 ≤ β ≤ 1 be the bargaining power of the
users, and 1 − β be the bargaining power of the service
provider. Bargaining power, as defined here, refers to
the relative ability of each party in the bargaining game

Fig. 5 Relationship among
the game parameters U , C,
G, P1, P2, Phigh, Plow, Y1,
and Y2
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to influence the setting of prices. Then, � = Yβ

1 Y1−β

2 is
the Nash product [12, 14] in the bargain. In essence,
� is the product of the players’ excess utilities, each
scaled by the corresponding player’s bargaining power.
Our objective is to find suitable values for Y1 and Y2

that maximize �. The optimization problem can be
formulated as:

max
Y1,Y2

� = Yβ

1 Y1−β

2 (15)

subject to the constraints:

Y1 + Y2 ≤ U − C − G (16)

Y1 ≥ U − Phigh (17)

Y2 ≥ Plow − C (18)

Constraints 16–18 can be explained by referring to
Fig. 5.

Figure 6 plots the curve of the objective function
� as a function of Y1 and Y2. The feasible area is
represented by the shaded triangle formed by linear
constraints 16–18. As the value of � increases, the curve
moves upwards, and vice versa. The maximum value of
� occurs when the curve intersects the line Y1 + Y2 =
U − C − G at exactly one point, and the coordinates
of this point correspond to the optimal values for Y1

and Y2. To obtain the latter values, we rewrite the opti-
mization problem Eqs. 15–18 in the following Lagrange
form:

max
Y1,Y2

�′ = Yβ

1 Y1−β

2 + η(Y1 + Y2 − U + C + G), (19)
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where η is the Lagrange multiplier. By taking the partial
derivatives of �′ with respect to Y1 and Y2, setting them
equal to zero, and using the fact that Y�

1 + Y�
2 = U −

C − G, we obtain:

Y�
1 = β(U − C − G) (20)

Y�
2 = (1 − β)(U − C − G) (21)

From the definition of Y1 and Y2, we finally obtain the
optimal prices as follows:

P�
1 = (1 − β)U + β(C + G) (22)

P�
2 = (1 − β)(U − G) + βC (23)

In the case of no transaction costs (i.e., G = 0), the
price users pay is exactly the amount that the provider
receives, hence:

P� = P�
1 = P�

2 = (1 − β)U + βC (24)

As we can see, the value of β determines the position
of the optimal price along the line segment between the
utility and cost values.

Let us now consider three special cases with respect
to the value of the bargaining parameter β that provide
some insight into the optimal solution of the above
optimization problem.

Case 1 β = 0, i.e., the service provider has all the
bargaining power; this situation arises whenever the
telecommunications market is dominated by one ser-
vice provider (monopoly) or a small number of
providers (oligopoly). In this case, we have that P� =
U ; hence, the service provider enjoys the total social
surplus by squeezing out the users’ surplus.

Case 2 β = 0.5, i.e., users and service provider have
exactly the same bargaining power. In this case, P� =
0.5(U + C), implying that the social welfare is equally
shared by the two parties.

Case 3 β = 1, i.e., the bargaining power resides solely
with the users; such a scenario may arise in the telecom-
munications market when the supply greatly exceeds
the aggregate user demand. In this case, we have
P� = C, and the provider has to abandon any benefits
(provider surplus) from supplying the service.

4.2 The multiple tier case

Let us now consider the general case of K > 1 tiers
of service. We can apply the methodology of the pre-
vious subsection to each service tier, z j, j = 1, · · · , K,

to obtain the optimal vector of tier prices P� =<

P�(z1), P�(z2), . . . , P�(zK) >. Let us assume for sim-
plicity that the transaction cost G is zero; then, using
expression 24, we obtain:

P�(z j) = (1 − β)U(z j) + βC(z j), j = 1, · · · , K (25)

Since both the utility U(x) and the cost C(x) are non-
decreasing functions of bandwidth x, we have that:

P�(z j) < P�(zk), 1 ≤ j < k ≤ K (26)

In other words, the optimal price increases with the
service tier index, i.e., with the amount of bandwidth
offered to the users, consistent with intuition.

5 Numerical results

To illustrate our methodology for pricing of tiered
services, we consider the market for broadband Inter-
net access under either a capacity-based or a usage-
sensitive tiered pricing scheme.3

Capacity-based pricing We have used data collected
at the San Diego Network Access Point (SDNAP) and
available at the CAIDA site [3] to obtain the cdf Facc

of Internet access speeds shown in Fig. 7. We adapted
the raw SDNAP data so that access speeds are in the
range [256 Kb/s, 12 Mb/s], typical of current broadband
speeds in the USA.

Usage-sensitive pricing We make the assumption that
the monthly amount of traffic generated by users is in
the range [5MB, 1TB] and follows the bounded Pareto
distribution (pdf):

f (x)= αkα

1−
(

k
p

)α x−α−1, 5=k ≤ x ≤ p=106, 0 < α < 2

(27)

We have selected two values for parameter α, corre-
sponding to two distribution functions:

• pdf f15/85 has α = 0.00001 and is such that approx-
imately 15% of users generate about 85% of the
total traffic

• pdf f5/50 with α = 0.03, for which 5% of users gen-
erate approximately 50% of the overall traffic.

3We have conducted a large number of experiments with a range
of distribution, utility, and cost functions. To avoid repetition, in
this study, we investigate the MAX-ES problem only with the in-
put functions described next. Nevertheless, these input functions
are characteristic of real-life scenarios and the results shown are
representative of what we have observed in our experiments.
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The latter distribution has characteristics similar to the
usage patterns reported recently by one major cable
ISP [6].

For all instances of the MAX-ES problem we inves-
tigate in this study, we let the utility function be

U(x) = λxγ log(x) (28)

and the cost function

C(x) = μx; (29)

hence, the social surplus S(x) = U(x) − C(x). The pa-
rameters of the utility function Eq. 28 can be selected
such that it is an increasing, strictly concave, and con-
tinuously differentiable function of service level x; this
function has also been considered in the context of
elastic traffic [19]. The parameters λ and γ can be used
to control the slope of U(x). In this work, we use the
values λ = 12, γ = 0.5, and μ = 0.4 for capacity-based
pricing, and λ = 9, γ = 0.5, and μ = 0.05 for usage-
sensitive pricing, to ensure that the surplus function
exhibits similar behavior across the different domains
of the corresponding distributions.

5.1 Service tier selection

Let us first consider the impact of the number M of in-
tervals in the pdf approximation (refer to Fig. 3) on the
convergence of the dynamic programming algorithm
we presented in Section 3.3.2. Figure 8 plots the value
of the optimal solution �(M, K) as a function of M for
the cdf Facc of Fig. 7 and the surplus function above.
Figure 9 is similar, but shows results for the Pareto cdf
F5/50.

We make two important observations from these
figures. First, for a given number K of service tiers, the
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Fig. 8 Expected surplus against M, cdf Facc

solution obtained by the dynamic programming algo-
rithm �(M, K) converges quickly as M increases. We
have run experiments with a wide range of instances
of MAX-ES beyond the ones we report here, and we
have found that, in all cases, M = 200 is sufficient for
convergence; hence, we have used this value for the
experiments we present in the remainder of this section.
This result confirms that the dynamic programming
algorithm provides an accurate and efficient solution to
the MAX-ES problem.

We also observe that the expected surplus increases
with the number K of service tiers. This behavior is
consistent with intuition: a larger number of tiers im-
proves the “resolution” of the final solution and allows
the dynamic programming algorithm to better tailor the
tiers to the given surplus and distribution functions.
The figures also demonstrate the (expected) effect of
diminishing returns, as further increases in the number
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K of service tiers provide smaller improvements to the
expected surplus.

We now compare four solutions to the MAX-ES
problem in terms of the expected social surplus they
achieve:

1. Optimal: This is the optimal dynamic programming
solution to the corresponding discrete-MAX-ES
instance.

2. Optimal-rounded: This is the tier structure derived
by rounding the values of the optimal tiers of the
above solution to the nearest multiple of 256 kb/s
(for capacity-based pricing) or 10 GB (for usage-
sensitive pricing). The motivation for this solution
arises from considerations related to marketing the
service to customers who do not have intimate
knowledge of the manner in which the optimal tier
structure is determined. More specifically, a tier of,
say, 100 GB is likely to seem more natural and
understandable to users compared to the outcome,
say, 98.54 GB, of the dynamic programming algo-
rithm, which could well be considered arbitrary.

3. Uniform: The K service tiers are spread uniformly
across the domain [xmin, xmax], i.e.,

zk = xmin + k
xmax − xmin

K
, k = 1, · · · , K.

4. Exponential: Each tier provides a level of service
that is twice that of the immediately lower tier:

zk+1 = 2zk, k = 1, · · · , K − 1.

As a result, the tiers divide the domain [xmin, xmax]
into intervals of exponentially increasing length.

The uniform and exponential are simple, straightfor-
ward solutions that do not involve any optimization
and are along the lines of the structures employed by
major ISPs.4 We consider them here as baseline cases
and to demonstrate that they perform poorly in terms
of maximizing the expected social surplus.

Since the raw expected surplus values are not compa-
rable across different instances of the MAX-ES prob-
lem, we introduce the concept of normalized expected
surplus to illustrate the relative performance of the four
algorithms above. For a given problem instance, let
Smax be the maximum expected surplus value achieved
by any of the four algorithms over all values of the
number K of tiers evaluated in our experiments. If S̄

4Many ADSL providers offer download speeds that follow an
exponential tiering structure, e.g., 384 kb/s, 768 kb/s, 1.5 Mb/s,
3 Mb/s, etc. Similarly for the 5/10/20/40 GB tiers of monthly traffic
used in the recent pilot program by a cable ISP [6].

is the expected surplus for a given algorithm-K pair, we
define the normalized expected surplus for this pair as:

S̄norm = S̄
Smax

, 0 ≤ S̄norm ≤ 1. (30)

The normalized expected surplus takes values in (0,1)
for all instances of MAX-ES and provides insight into
the relative behavior of the four algorithms.

Figures 10, 11, and 12 plot the normalized expected
surplus as a function of the number K of service tiers for
the three distribution functions Facc, F5/50, and F15/85,
respectively. Each figure contains four curves, each
corresponding to one of the algorithms for the MAX-
ES problem described above. We observe that the
curves for the optimal and optimal-rounded solutions
almost overlap, and exhibit the best performance by
far across all the values of K except very small ones,
regardless of the underlying distribution function. In
particular, the exponential solution decreases rapidly
for K > 2 to about 30–50% of the optimal expected
surplus, depending on the distribution (Facc or Pareto).
These results demonstrate that exponential grouping
of customers, though favored by ISPs, performs far
from optimal from an economic standpoint. In fact,
the uniform tiering structure performs better than the
exponential one, but it can also be far from the optimal
solution for other than very small values of K.

The main conclusion from the results shown in
Figs. 10–12 is that, by employing our dynamic program-
ming algorithm, which has low computational require-
ments, it is possible to obtain optimal tiering structures
that improve the expected surplus over simple solu-
tions by a factor of up to 2–3. More importantly, our
approach makes it possible to re-optimize the tiering
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structures over time to accommodate evolving user
demands and market conditions.

5.2 Optimal pricing of service tiers

Given a vector < z1, · · · , zK > of K of service tiers,
as well as the utility U(x) and cost C(x) functions,
we may solve the optimization problem in Section 4
to obtain the optimal prices for each of the service
tiers. Figure 13 plots the optimal prices for the K = 5
optimal service tiers obtained for cdf Facc. As we can
see, the optimal tier structure does not resemble ei-
ther the uniform or exponential structures. Three price
structures are shown, corresponding to the three values
of the bargaining power of users β = 0.25, 0.5, 0.75. As
expected, the lower the bargaining power of users, the
higher the corresponding price. Also, for a fixed value
of β, the price increases with the tier index, consistent
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with our discussion in Section 4.2. Moreover, the price
increase from one tier to the next is tied directly to the
shape of the utility and cost functions, thus reflecting
the perspective of both users and providers.

In the previous subsection, we demonstrated that the
exponential and uniform tiering structures are far from
optimal with respect to the expected social surplus.
We now show that these structures are also subopti-
mal in terms of the revenue collected by the service
provider. Consider a tier vector < z1, · · · , zK >, and
let P(z j), j = 1, · · · , K, be the optimal price structure
obtained by applying the methodology of Section 4.
Then, the expected revenue R̄ collected by the service
provider can be calculated as:

R̄(z1, · · · , zK) =
K∑

j=1

(
P(z j)

(
F(z j) − F(z j−1)

))
. (31)

Figures 14 and 15 plot the normalized expected revenue
against the number K of service tiers for the four so-
lutions to the MAX-ES problem we described earlier;
the normalized expected revenue is defined similarly
to the normalized expected surplus in expression 30.
Note that the highest revenue is obtained when there
is only one tier, in which case all users are mapped
to the highest possible service (that also incurs the
highest price); such a solution is unlikely to be adopted
in a market environment, and is included here for
illustration purposes only. As the number K of tiers
increases, the expected revenue decreases for a while
and then stabilizes. The curves for the optimal and
optimal-rounded solutions both converge quickly to a
value that is around one-half that of the maximum rev-
enue for K = 1. However, the exponential and uniform
solutions drop much more rapidly, eventually reaching
a value that is only one-quarter (for Facc) or one-sixth
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(for the Pareto distribution) of the maximum revenue.
Again, the uniform tiering structure outperforms the
exponential one, while the optimal solution achieves an
expected revenue that is up to 2-3 times higher than the
other two, consistent with the results of the previous
section.

Since the cost of providing the service is the same
regardless of what tiered structure is selected, these
results indicate that, by adopting simple, suboptimal
solutions, the service provider may end up foregoing a
substantial fraction of potential revenues. More impor-
tantly, these additional revenues are not at the expense
of users, but rather due to the larger surplus achieved
by the optimal solution. In other words, the optimal
tiered structure provides substantially more value to
both users and providers.
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6 Extensions

We now discuss two directions in which our work may
be extended.

6.1 Optimizing the number of service tiers

The MAX-ES problem takes the number K of service
tiers as input, and its objective function Eq. 2 is based
on the assumption that there is no cost associated with
offering each tier. In general, however, the total cost
to the network provider of offering K tiers of service
consists of two components. The first component is due
to the cost of bandwidth: the higher the access speed
or the amount of traffic generated by the users, the
higher the cost. We used the nondecreasing function
C(x) to denote this cost, which may be used to represent
the link cost for carrying user traffic, as well as the
cost of switching the traffic in the network. The second
component is due to the cost of software and hardware
mechanisms (e.g., queueing structures, policing mecha-
nisms, control plane support, etc.) required inside the
network for implementing a given number K of service
tiers.

Let Ct(k) be a nondecreasing function representing
the cost of employing k service tiers. In this variant of
the MAX-ES problem, the objective is to determine
both the optimal number K of service tiers and their
values so as to maximize the objective function:

S̄(z1, · · · , zK) − Ct(K), (32)

where S̄(z1, · · · , zK) is the expected surplus in expres-
sion 2. This problem can be solved near-optimally with
the dynamic programming algorithm we presented in
Section 3.3.2 after modifying expressions 13–14 to ac-
count for the cost component Ct(k). The running time
of this algorithm is O(M3), since it has to examine all
M possible values for the number of service tiers.

6.2 Tiered structures for bundles of services

In this work, we have considered services that are
characterized by a single parameter, e.g., access speed
or amount of traffic generated. With advances in tech-
nology, more sophisticated network providers may be
able to bundle and market several services in a single
package. For instance, it is conceivable that providers
might offer subscribers storage space on top of broad-
band access, or Internet connections that are charac-
terized not only in terms of speed but also in terms of
additional parameters such as availability or reliability.
In such a scenario, a tiered structure would consist of
service tuples, where each tuple is the set of levels of



Ann. Telecommun.

each service in the bundle corresponding to this tier.
For instance, the tuple (3 Mb/s, 5 GB) would corre-
spond to a tier in which the customer subscribes to a
service bundle that offers access speed of 3 Mb/s and
storage capacity equal to 5 GB. Then, the problem we
considered in this work generalizes to finding a tiered
service and pricing structure that is jointly optimal for
all the services in the bundle. This problem, which is
the subject of ongoing research in our group, is further
complicated by the fact that, in general, the utility and
cost functions will be different for each of the bundled
services

Finally, we note that the economic model we con-
sidered can be extended to include a heterogeneous
population of users, in which different user segments
are characterized by different utility functions, as well
as heterogeneous providers (e.g., in terms of size, power
of negotiation, etc.). Our model only takes into account
technical costs, and it is possible to extend it to consider
non-technical and fixed costs as well. The implications
of tiered service as the basis of a universal Internet
service are also worth exploring.

7 Related work

Pricing of Internet services using concepts from eco-
nomic theory has been a subject of research for more
than a decade [5, 8–11, 15, 16, 18, 20]. This is a broad
area that encompasses issues from calculating the cost
of resources to determining the services to offer and
setting appropriate prices, and from dealing with the
realities and economics of layered networks to inter-
connection agreements between ISPs. An initial focus
was on charging as a mechanism for controlling the
behavior of users, and/or for limiting usage to make
room for higher-paying users. Early work [9, 10] also
addressed the issues of charging, rate control, and rout-
ing in communication networks carrying elastic traffic.
The main finding of these studies was that the system
reaches an optimum state when the network’s choice of
allocated rates is at equilibrium with users’ choices of
charges. The Paris metro pricing (PMP) scheme in [16]
separates the network into independent subnetworks
that behave similarly but charge their customers at
different rates. A mathematical model of PMP was
developed in [18] by viewing each subnetwork as a sin-
gle bottleneck queue, and assuming that data packets
may select the most suitable subnetwork “intelligently”
by considering not only the delays but also the prices
charged. The conclusion of the study was that there
exist necessary and sufficient conditions for the system
to attain stability. The issue of charging at the session

or network layer while maintaining a clean separation
between the underlying technologies was considered
in [8].

More recent work has studied the issues arising in
pricing multiple classes of service, especially in the con-
text of differentiated services. A game theoretic pricing
mechanism for “statistically guaranteed” service in the
Internet was proposed in [20]. This mechanism was
shown to offer better service and lower prices to users,
and enables the provider to adopt various service and
revenue models. The work in [5] also adopted a game-
theoretic strategy to study a simple two-class differenti-
ated service model, and found that the system is easy to
trap into an undesirable equilibrium whenever prices
do not properly reflect the quality of the service pro-
vided. Accordingly, a new dynamic pricing approach
was proposed in order to avoid this problem. Finally,
a free market economic model for ad-hoc wireless
networks was proposed recently in [15]. Based on a
greedy pricing strategy, the model maximizes the social
welfare while ensuring non-negative profit for the users
and service provider. This study also developed a non-
greedy policy that optimizes a profit fairness metric.

Our work differs from existing literature in that
our focus is on optimizing the service tiers and cor-
responding price structures given some information
about users and providers, regardless of the underly-
ing assumptions upon which this information is based.
Consequently, our work is quite general in scope and
may be applied to a variety of contexts, independently
of whether the pricing scheme is capacity-based or
usage-sensitive, whether charging is at the network or
session/application layers, or whether the transaction is
between users and provider or between providers.

8 Concluding remarks

We proposed an economic model for tiered-service
networks and developed an efficient algorithm to select
the service tiers in a manner that optimizes the social
surplus. We also presented a method, based on Nash
bargaining, to determine the optimal price for each
service tier. Our approach provides insight into the
selection and pricing of Internet tiered services, as well
as a theoretical framework of practical importance to
network providers.
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