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Traffic Adaptive WDM Networks: A Study of
Reconfiguration Issues
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Abstract—This paper studies the issues arising in the reconfig-
uration phase of broadcast optical networks. Although the ability
to dynamically optimize the network under changing traffic con-
ditions has been recognized as one of the key features of multi-
wavelength optical networks, this is the first in-depth study of the
tradeoffs involved in carrying out the reconfiguration process. We
develop and compare reconfiguration policies to determinavhen
to reconfigure the network, and we present an approach to carry
out the network transition by describing a class of strategies that
determine how to retune the optical transceivers. We identify the
degree of load balancing and the number of retunings as two im-
portant, albeit conflicting, objectives in the design of reconfigura-
tion policies, naturally leading to a formulation of the problem as

ceived by the users. The issues that arise in reconfiguring a light-
wave network by retuning a set of slowly tunable transmitters or
receivers have been studied in the context of multihop networks
in [5], [6], and [9]. In [5], the problem of obtaining a virtual
topology that minimizes the maximum link flow, given a set
of traffic demands, was studied, while in [6], algorithms were
developed for minimizing the number of branch-exchange op-
erations required to take the network from an initial to a target
virtual topology, once the traffic pattern changes. The objective
of [9], on the other hand, was to obtain near-optimal policies
to dynamically determine when and how to reconfigure the net-

a Markovian decision process. Consequently, we develop a system-+york.

atic and flexible framework in which to view and contrast recon-
figuration policies. We show how an appropriate selection of re-
ward and cost functions can be used to achieve the desired ba
ance among various performance criteria of interest. We conduct a
comprehensive evaluation of reconfiguration policies and retuning
strategies and demonstrate the benefits of reconfiguration through
both analytical and simulation results. The result of our work is
a set of practical techniques for managing the network transition
phase that can be directly applied to networks of large size. Al-
though our work is in the context of broadcast networks, the re-
sults can be applied to any wavelength-division multiplexing net-
work where it is necessary to multiplex traffic from a large user
population into a number of wavelengths.

Index Terms—Broadcast optical networks, Markov decision
process, reconfiguration policies, wavelength-division multi-
plexing (WDM).

I. INTRODUCTION

NE OF the key features of multiwavelength optical ne

works isrearrangeability[4], i.e., the ability to dynam-

ically optimize the network for changing traffic patterns, or t
cope with failure of network equipment. This ability arises as

consequence of the independence between the logical con
tivity and the underlying physical infrastructure of fiber glas
By employing tunable optical devices, the assignment of tra
mitting or receiving wavelengths to the various network nod
may be updated on the fly, allowing the network to closely tra
changing traffic conditions.

While the rearrangeability property makes it possible to d
sign traffic-adaptive self-healing networks, the reconfiguratid

phase will interfere with existing traffic and disrupt network pe

formance, causing a degradation of the quality of service pé?

In this paper, we study the reconfiguration issues arising
in single-hop lightwave networks, an architecture suitable for
local- and metropolitan-area networks (LANs and MANS)
[7]. The single-hop architecture employs wavelength-division
multiplexing (WDM) to provide connectivity among the
network nodes. The various channels are dynamically shared
by the attached nodes, and the logical connections change on
a packet-by-packet basis creating all-optical paths between
sources and destinations. Thus single-hop networks require
the use of rapidly tunable optical lasers and/or filters that can
switch between channels at high speeds.

When tunability only at one end, say, at the transmitters,
is employed, each fixed receiver is permanently assigned to
one of the wavelengths used for packet transmissions. In a
typical near-term WDM environment, the number of chan-
nels supported within the optical medium is expected to be
ls_,maller than the number of attached nodes. As a result, each
channel will have to be shared by multiple receivers, and the
groblem of assigning receive wavelengths arises. Intuitively,

wavelength assignment (WLA) must be somehow based on
ﬁ 8_prevai|ing traffic conditions. More specifically, the stability

ondition, derived in [11], for the HiPeR+eservation protocol
'g_r broadcast WDM networks suggests that in determining
appropriate WLA, the objective should be to balance the
ered load across all channels, such that each channel carries
an approximately equal portion of the overall traffi@ut with
gged receivers, any WLA is permanent and cannot be updated
R response to changes in the traffic pattern.
(. Alternatively, one can usslowly tunablerather than fixed,
ceivers. We will say that an optical laser or filter is rapidly
tunable if its tuning latency (i.e., the time it takes to switch from
one wavelength to another) is on the order of a packet trans-
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mission time at the high-speed rates at which optical networ&ision process and show how an appropriate selection of reward
are expected to operate. Slowly tunable devices, on the othed cost functions can achieve the desired balance between var-
hand, have tuning times that can be significantly longer. Asieus performance criteria of interest. However, because of the
result, these devices cannot be assumed “tunable” at the mduige state space of the underlying Markov process, it is im-
access level (i.e., for the purposes of scheduling packet trapsssible to directly apply appropriate numerical methods to ob-
missions), as this requires fast tunability. Motivation for the ugain an optimal policy. We therefore develop an approximate
of slowly tunable lasers or filters is provided by two factoranodel with a manageable state space, which captures the perti-
First, they can be significantly less expensive than rapidly tunent properties of the original model. We also study the issues
able devices, making it possible to design lightwave network ahat arise during the transition phase and we present a class of
chitectures that can be realized cost effectively. Second, the vaeituning strategies. Finally, we present a comprehensive evalu-
ation in traffic demands is expected to take place over larger tiragon of reconfiguration policies and retuning strategies through
scales (several orders of magnitude larger than a single padieth analytical and simulation techniques.
transmission time). Hence, even very slow tunable devices willln Section Il, we present a model of the broadcast WDM net-
be adequate for updating the WLA over time to accommodatsrk under study. In Section Ill, we formulate the reconfigura-
varying traffic demands. tion problem as a Markovian decision process, and we discuss
Assuming an existing WLA and some information about the issues involved in obtaining an optimal policy. In Section IV,
new traffic demands, a new WLA, optimized for the new traffieve describe a class of retuning strategies for taking the network
pattern, must be determined. We considered this problem in [fthm the old to the new WLA. We present numerical results in
and we proposed an approach to reconfiguring the network tissction V and conclude this paper in Section VI.
is minimally disruptive to existing traffic. Specifically, we de-
vised theGLPT algorithm for obtaining a new WLA such that
a) the new traffic load is balanced across the channels and b) the
number of receivers that need to be retuned to take the networkVe consider a packet-switched single-hop lightwave network
from the old to the new WLA is minimized. The specificationsvith N nodes, and one transmitter-receiver pair per node. The
of GLPT include &nobparameter, which provides for tradeoffnodes are physically connected to a passive broadcast optical
selection between load balancing and number of retunings.nvedium that support€’ < N wavelengths),, ..., Ac. Both
terms of load balancing, the WLA obtained by GLPT is guaratie transmitter and the receiver at each node are tunable over the
teed to be no more than two times away from the optimal onentire range of available wavelengths. However, the transmit-
in the worst case, regardless of the knob value used. GLPT diers arerapidly tunablewhile the receivers arglowly tunable
leads to a scalable approach to reconfiguring the network, sinte will refer to this tunability configuration, shown in Fig. 1,
it tends to select the less utilized receivers for retuning, and sireerapidly tunable transmitter, slowly tunable receiv@®TT-
for certain values of the knob parameter the expected numbe&dtR). Although we will only consider RTT-STR networks in
retunings scales with the number of channetgthe number of this paper, we note that all our results can be easily adapted to the
nodes in the network. For more details on the operation and peual configuration, STT-RTR. Further, the results can be applied
formance of the GLPT algorithm, the reader is referred to [1]to any WDM network where it is necessary to multiplex traffic
During the reconfiguration phase, while the network makdrgom a large user population into a number of wavelengths, and
a transition from one WLA to another, some cost is incurred they are not limited to broadcast networks.
terms of packet delay, packet loss, packet desequencing, and th&fe represent the current traffic conditions in the network by
control resources involved in receiver retuning. Clearly, receivan NV x N traffic demand matrixI’ = [¢;,;]. Quantity¢;; could
retunings should not be very frequent, since unnecessary retha-a measure of the average traffic originating at nicated ter-
ings affect the performance encountered by the users. Heno@ating at node, or it could be the effective bandwidth [8] of
it is desirable to minimize the number of network reconfigurahe traffic from< to j. As traffic varies over time, the elements
tions. However, postponing a necessary reconfiguration also ledsnatrix Twill change. This variation in traffic takes place at
adverse effects on the overall performance. Since the netwtakger scales in time; for instance, we assume that changes in
does not operate at an optimal point in terms of load balanciribe traffic matrixT'occur at connection request arrival or termi-
it takes longer to clear a given set of traffic demands, causingtion instants. We also assume that the current m&tgeom-
longer delays and/or buffer overflows, as well as a decreasepietely summarizes the entire history of traffic changes, so that
the network’s traffic carrying capacity (refer also to the stabilitfuture changes only depend on the current values of the elements
conditionin[11]). Similarly, if the decisions are made merely bpf T.
considering the degree of load balancing, even tiny changes irDuring normal operation, each of the slowly tunable receivers
the traffic demands can lead to constant reconfiguration, therabyassumed to be fixed to a particular wavelength. 1gt) <
significantly hurting network performance. Consequently, it i§\;,. .., Ac} be the wavelength currently assigned to receiver
important to have a performance criterion that can capture theA WLA is a partitionR = {R., ¢ = 1,...,C?} of the set
above tradeoffs in an appropriate manner and allow their sim¥* = {1,...,N} of nodes, such thak. = {j | A(j) =
taneous optimization. Ao}, e =1,...,C,isthe subset of nodes currently receiving on
In this paper, we develop a novel, systematic, and flexibleavelength).. This WLA is known to the network nodes, and
framework in which to view and contrast reconfiguration poliit is used to determine the target channel for a packet, given the
cies. Specifically, we formulate the problem as a Markovian dpacket’s destination. The network operates by having each node

Il. THE BROADCAST WDM NETWORK
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Transmitting side Receiving side

Node 1 Node 1
fast tunable laser slowly tunable filter

passive star

Fig. 1. A broadcast WDM network withV' nodes and”' channels.

employ a media access protocol, such as HiPgRat requires new traffic matrixI’, and determines the new WLA. Section IlI
tunability only at the transmitting end. Nodes use HiReR- addresses the problem of determining whether the changes in
make reservations, and can schedule packets for transmissiaffic conditions warrant the reconfiguration of the network to
using algorithms that can effectively mask the (relatively shortle new WLA, and Section IV studies the issue of receiver re-

latency of tunable transmitters [10]. tuning.
We now define thelegree of load balancin(PLB) ¢(R,T)
for a network W|th traf'fiC matriXI‘ Operating Under WLAR as ||| M ARKOV DEC|S|ON PROCESSFORMULAT|ON
7 N N A. Reconfiguration Policies
(1+ ¢(R T))—E":1 D S 3t We defi i
) C B e ij e define the state of the network as a tue, T). R is

i=1 jER, the current WLA, andlis a matrix representing the prevailing

. . . =/ traffic conditions. Changes in the network state occur at instants
The right-hand side of (1) represents the bandwidth requiremeifan the matrixT is updated. Recall that we have assumed

of the dominant (i.e., most loaded) channel, while the secofifl; fyture traffic changes only depend on the current values
termin the left-hand side of (1) represents the lower bound, wild {he elements of, a reasonable assumption when the traffic
respect to load balancing, for any WLA for traffic matf. s ot characterized by long-range dependencies. Therefore, the
Thus, the DLB is a measure of how far away WiRAs from the procesgR, T) is a semi-Markov process. Létf be the process

lower bound. If¢ = 0, then the load is perfectly balanced and mpedded at instants when the traffic matrix changes. Thén,
each channel carries an equal portion of the offered traffic, while; giscrete-time Markov process. Our formulation is in terms
wheng > 0, the channels are not equally loaded. In other words; the Markov processu.

the DLB characterizes the efficiency of the network in meeting p network in state(R, T) will enter state(R’, T') if the
the traffic demands denoted by mati@ixwhile operating under i matrix changes ta”. Implicit in the state transition is
WLA 'R: the higher the value af, the less efficient the WLA. 5 the system makes a decision to reconfigure to WR/Aln
_ In order to more efficiently utilize the bandwidth of the opyqer to completely define the Markovian state transitions asso-
tical medium as traffic varies over time, a new WLA may b@jateqd with our model, we need to establisxt WLAdecisions.
sought that distributes the new load more equally among e decision is a function of the current state and is denoted by
channels. We will refer to the transition of the network fron&[(R’T)]. Settingd[(R, T)] = Ruex: implies that if the system
one WLA to another ageconfiguration In general, we assume g i state(R, T') and the traffic demands change, the network
that reconfiguration is triggered by changes in the traffic matrgf, o 1d be reconfigured into WLR ... Note that WLAR yex:
T. When such a change occurs, the following actions must pg, e the same &, in which case the decision is not to recon-
taken. figure. Therefore, for each stat®, T), there are two alterna-
1) A new WLA for the new traffic matrix must be deter-tives: either the network reconfigures to WI' obtained by
mined. the GLPT algorithm witfR andT’ as inputs (in which case the
2) Adecision must be made on whether or not to reconfigufrw state will bg’R’, T)) or it maintains the current WLA (in
the network by adopting the new WLA. which case the new state will §&, T')). The set of decisions
3) If the decision is to reconfigure, the actual retuning abr all network states definesraconfiguration policy
receivers must take place. To formulate the problem as a Markov decision process, we
The first issue was addressed in [1], where we developed theed to specify reward and cost functions associated with each
GLPT algorithm. It takes as input the current WiZA and the transition. Consider a network in stgt®, T) that makes a tran-



436 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 19, NO. 4, APRIL 2001

sition to stated’R’, T'). The network acquires dmmediate ex-  Consider an ergodic, discrete-space discrete-time Markov
pected rewardequal toa[¢(R’, T')], wherea(-) is a nonin- process with rewards and a set of alternatives per state that
creasing function of(R’, T), the DLB of WLA R’ with re- affect the probabilities and rewards governing the process.
spect to the new traffic matri’. Also, if R’ # R, arecon- Howard'spolicy-iterationalgorithm [3] can be used to obtain
figuration costequal tog[D(R, R')] is incurred, whergd(-) is  a policy that maximizes the long-term reward in (3) for such a
a nondecreasing function of the number of receivers that hguecess. Initially, an arbitrary policy is specified from which all

to be retuned to take the network to the new WEA In other state transition rates are determined. The algorithm then enters
words, a switching cost is incurred each time the network maki¢és basic iteration cycle, which consists of two stages. The first
a decision to reconfigure. We assume that the rewards and ceségje is thevalue-determination operationyhich evaluates

are bounded, i.e., the current policy. In the second stage, gadicy-improvement
routine uses a set of criteria to modify the decisions at each
tmin SA[P(R,T')] < aimax state and obtain a new policy with a higher reward than the
0 <Bumin < B[D(R,R)] < Pmax (2) original policy. This new policy is used as the starting point for
the next iteration. The cycle continues until the policies in two
whereamin, tmax, Gmin, 8NASmax are real numbers. successive iterations are identical. At this point, the algorithm

The problem is how to reconfigure the network sequentiallyas converged, and the final policy is guaranteed to be optimal
in time, so as to maximize the expected reward minus the recavith respect to maximizing the reward in (3).
figuration cost over an infinite horizon. LER™ T*)) denote A difficulty in applying the policy-iteration algorithm to the
the state of the network immediately after theh transition, Markov process\ is that its running time per iteration is domi-
k =1,2,... Let alsoZ be the set of admissible policies. Thenated by the complexity of solving a number of linear equations
network reconfiguration problem can then be formally stated aa the order of the number of states in the Markov chain. Even

follows (note thatD(R,R) = 0). if we restrict the elements of traffic matrikto be integers and
Problem 3.1: Find an optimal policy:* € Z that maximizes impose an upper bound on the values they can take, the poten-
the expected reward tial number of state§R, T') is so large that the policy-iteration

algorithm cannot be directly applied to anything but networks
of trivial size. In the next section, we show how to overcome
this problem by making some simplifying assumptions that will
(3) allow us to set up a new Markov process whose state space is
The first term on the right-hand side of (3) is the reward otinanageable.
tained by using a particular WLA, and the second term is the
cost incurred at each instant of time that reconfiguration is pé#- Alternative Formulation
formed. The presence of a reward that increases as thedLB consider a network in stat&k, T, and a new traffic matrix
decreases (i.e., as the load is better balanced across the chanpr which the WLA obtained with the GLPT algorithm is
nels) provides the network with an incentive to associate Wii, A closer examination of the reward function in (3) reveals
a WLA that performs well for the current traffic load. On thenat the immediate reward acquired when the network makes
other hand, the introduction of a cost incurred at each reconfigiyransition does not depend on the actual values of the traffic
uration instant discourages frequent reconfigurations. Thus, §18ments or the actual WLAs involved, but only on the values of
overall reward function captures the fundamental tradeoff bgre DLBs$(R, T’) and¢(R’, T’) and the distanc®(R, R').
tween the DLB and frequent retunings involved in the reconfigryys, we make the simplifying assumption that the decision to

uration problem. In Section V, we motivate the above formulgaconfigure will also depend on the DLBs and the distance only.
tion by showing how an appropriate selection of reward and cogjs is a reasonable assumption, since it is the DLB, not the
functions yields various performance criteria of interest. Typctyal traffic matrix or WLA, that determine the efficiency of
cally, such selection can be based on either measurements of@network in satisfying the offered load. Similarly, it is the
existing network or simulations. number of retunings that determines the reconfiguration cost,
For the cases,..., = 0, the problem of finding an optimal ot the actual WLAs involved.
policy is trivial, since it is optimal for the network to associate gased on these observations, we now introduce a new process
with the WLA that best balances the offered load at each instaffhpedded, as Markov procesd, at instants when the traffic
intime. This is because the evolution of the traffic mafis not  matrix changes, as illustrated in Fig. 2. The state of this process
affected by the network’s actions and reconfigurations are frgg gefined to be the tuples, D), whereg is the DLB achieved by
However, wheng,.x > 0, there is a conflict betweefuture  the current WLA with respect to the current traffic matrix and
reconfiguration costs incurreandcurrent reward obtainedind  p is the number of retunings required if the network were to
itis not obvious as to what constitutes an optimal policy. We al$gconfigure. Transitions in the new process have the Markovian
note that as?,,in» — oo, the optimal policy would be to NEVEer property, since they are due to changes in the traffic matrix that,
reconfigure, since this is the only policy for which the expectgg turn, are Markovian. However, as defined, the process is a

reward in (3) would be nonnegative. Again, however, the poigbntinuous-state process since, in general, the Pli8a real
(i.e., the smallest value df,.,;;,) at which this policy becomes

optimal is not easy to determine, as it depends on the transitiodt e elements off are real numbers, thett becomes a continuous-state
probabilities of the underlying Markov chain. process and the policy-iteration algorithm cannot be applied.

k
F = lim 1E {Z a[d)(R(l), T(l))] _ /3[2)(71(1—1)’71(1))]} .
=1
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Tuple (¢ ,D(R, R’) ) describes the state of Markov process M’ at this point

R, 0 (keep old WLA)

T <
T.R 4 R0, (retune to new WLA)
| l |

\M Time

Decision points for the MDP

(instants at which the traffic matrix T changes)

Fig. 2. State of the new Markov procesd’.

number. In order to apply Howard’s policy-iteration algorithm,
we need a discrete-state process. We obtain such a process
using discrete values for random variablas follows. a9, ) :

By definition [refer to (1)], the DLB¢ can take any real o4, )-B(D) o(d, ) :
value between zero and@ — 1, where C is the number 09, D )=l
of channels in the network. We now divide the interval ) /

[0,C — 1] into a numberK + 1 of nonoverlapping intervals

[0y, 600). 057, 1), ., [0, 5], where " and ¢ : o0,)

are the lower and upper values of interval k. = 0,..., K, D o \-
andgy < ¢y, o) = 0,8 = ¢}, andely = C — 1. 4D 50~ B(D)

Let ¢, denote the midpoint of intervél. We now define a new ao.)
discrete-state procegg!’ with state{¢y, D). We will use state "
(¢, D) to represent any statgp, 2 of the continuous-state

process such tha;b( < ¢ < (/) Clearly, the larger the — Transitions taken when the decision is not to reconfigure
numberK of intervals, the better the approximation.

Before we proceed, we make one further refinement to the
new discrete-state procesd’. We note that the GLPT algo-
rithmin[1] is an approximation algorithm for the load balancingig- 3. Transitions and rewards out of stat&., D) of processM’ under
problem, and it guarantees that the DLB of the WLA obtaindhe two decision alternatives (Note: the labels along the transitions represent

rewardsnot transition probabilities).
using the algorithm will never be more than 50% away from
the degree of load balancing of the optimal WLA. The impor-
tance of this result is as follows. Consider a network in whicthe traffic matrix changes, the network has two options. It
the traffic matrix changes in such a way that the current WLay maintain the current WLA, in which case it will make
provides a DLB¢ for the new traffic matrix such that < 0.5. a transition into stat¢¢;, D’), where¢; is the DLB of the
Based on the guarantee provided by algorithm GLPT, we caurrent WLA with respect to the new traffic matrix ard’
safely assume that the load is well balanced and avoid a recinthe new distance. Or, it will reconfigure into a new WLA.
figuration. This is because the network will incur a cost for rén the latter case, the network will move into stdi&), D"),
configuring, without any assurance that the new DLB will bgince its new DLB is guaranteed to be less than 0.5. When
less thanp. Therefore, we choose to lgf = 0.5, and there- the network makes a transition into statg, D’),I > 0, it
fore the midpoint for the first interval ig, = 0.25. We will acquires an immediate expected reward, which is equal to
call any statd ¢, D) abalancedstate since the offered load isa(¢:). In addition, if(¢;, D’) is a balanced state (i.e. lit= 0),
balanced within the guarantees of the GLPT algorithm. a reconfiguration cost equal t#(D) is incurred.

We now specify decision alternatives, as well as reward The transitions out of statepx, D) and the corresponding
and cost functions, associated with each transition in the négwards are illustrated in Fig. 3. If the decision of the policy is
processM’. Consider a network in statey, D). At the instant Nnot to reconfigure, then the process will take one of the transi-

tions indicated by the solid arrows in Fig. 3. Since the network
3The valuep = 0 is achieved when the load is perfectly balanced across tigfoes not incur any reconfiguration cost, the immediate reward
C channels, in which case the expression on the right-hand side of (1) becora@ﬁuired is a function of the new DLB in the new state. If, on
equal o>~ EN t;;/C. The valuep = C — 1 corresponds to the worst L . L.
nthg other hand, the decision is to reconfigure, the transition out

case scenarro where one channel carries all the traffic; in this case, the right- .
side of (1) becomes equal 5 | =¥ | #;; of state(¢y, D) will always take the network to a balanced state

-+ Transitions taken when the decision is to reconfigure
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with a DLB equal togg. These transitions are shown in dottedor the node to become ready for receiving again. Moreover,
lines in Fig. 3. A reconfiguration cost is incurred in this casgackets for arriving to the various transmitters during this time
making the immediate reward equald¢po) — 5(D). cannot be serviced and may cause buffer overflows. This in-
The new proces$1’ is a discrete-space discrete-time Markoerease in delay and/or packet loss during the transition phase
process with rewards and two alternatives per state, and we @athe penalty incurred for reconfiguring the network. Once all
use the policy-iteration algorithm [3] to obtain an optimal policyeceivers have been retuned to their new wavelengths, the net-
off-line and cache its decisions. The optimal policy decisiorgork has completed its reconfiguration and normal operation
can then be applied to a real network environment in the fokdll resume until a new reconfiguration is required.
lowing way (refer also to Fig. 2). Consider a network with traffic There is a wide range of strategies for retuning the receivers,
matrix T operating under WLAR. Let TV be the new traffic mainly differing in the tradeoff between the length of the tran-
matrix andR’ be the WLA constructed by algorithm GLPT [1],sition period and the portion of the network that becomes un-
with R andT’ as inputs. Let als® = D(R, R’) be the number available during this period (see [6] for a discussion of similar
of receivers that need to be retuned to obtain WRAfrom issues in multihop networks). One extreme approach would be
WLA R. To determine whether the network should reconfigute simultaneously retune all the receivers that are assigned new
to the new WLATR’, let ¢(R,T) be the current DLB for the channels undeR’. The duration of the transition phase is min-
network, and suppose thatR, T) falls within thekth interval, imized under this approach (it becomes equal to the receiver
0 < k < K. By definition of the Markov proces$’, the cur- tuning latency), but a significant fraction of the network may
rent network state is modeled by stéte, D) of this process. If, be unusable during this time. At the other extreme, a strategy
under the optimal policy, the decision associated with this statet retunes one receiver at a time minimizes the portion of the
is to reconfigure, then the network must make a transition to thetwork unavailable at any given instant during the transition
new WLA R’; otherwise, the network will continue operatingohase, but it maximizes the length of this phase (which now be-
under the current WLAR. comes equal to the receiver tuning latency times the distance
We note that the discrete-space Markov pro¢essD)isan D(R,R’)). Between these two ends of the spectrum lie a range
approximation of the continuous-space prodesd), since, as of strategies in which groups of two or more receivers are re-
discussed above, in general the DiBs a real number betweentuned simultaneously.
zero and”'—1. We also note that as the number of intervéls— LetsS, | S |= D(R,R'), bethe setof receivers that need to be
oo, the discrete-state process approaches the continuous-statitgched to new wavelengths in order to reconfigure the network
one. Therefore, we expect that as the number of interials to WLA R’. In the most general sense, a retuning strategy is
increases, the accuracy of the approximation will also increasefined as a partition of into M, 1 < M <| S |, subsets
and the decisions of the optimal policy obtained through thd receiversy,,, such that time,,, is associated with subset, .
procesg i, D) will “converge.” This issue will be discussed inUnder this definition, a subsgf, represents a group of receivers
more detail in Section V, where numerical results to be presentbdt are simultaneously taken off-line for retuning. The retuning
will show that the decisions of the optimal policy “converge” foof groupg,, starts at time,,, and lasts for a period of time equal
relatively small values of(. This is an important observationto the receiver retuning latency, after which the receivers in the
since the size of the state space of Markov progel$sncreases group become operational again. Without loss of generality, we
exponentially withK'. By using a relatively small value fd€, assume that,, < t,,+41.
we can keep the state space of the process to a reasonable siaée distinguish betweermverlapping and nonoverlapping
making it possible to apply the policy-iteration algorithm [3]. strategies. In the former, the retuning periods of two distinct
groups of receivers are allowed to overlap, while in the latter
a groupg,, does not start retuning until after grogp,_; has
completed its retuning. Since it does not appear that overlap-
In this section, we assume that a decision to reconfigure thimg strategies offer any advantages over nonoverlapping ones
network has been made according to the optimal policy dgn fact, they may complicate the management of the transition
scribed in the previous section, and that the new WkAhas phase), we only consider nonoverlapping strategies here.
been obtained through the GLPT algorithm [1]. We are, therelowever, the number of partitions of the setan potentially
fore, concerned with thgansition phaseduring which the ac- be very large, making it impractical to study all possible
tual retuning of receivers that takes the network from the curenoverlapping strategies. Hence, we restrict ourselves to the
rent WLA R to the new WLAR' takes place. Clearly, in orderclass of parameterized nonoverlapping strategies described in
to complete the reconfiguration, a number of receivers equ@y. 4. Specifically, a family of strategies is characterized by a
to D(R,R’") must be retuned. Aetuning strategydetermines specific value for parametdr, which represents the maximum
when, and in what sequence, these receivers are taken off-lmgnber of receivers in each grouyp,. When a group ofl.
for retuning. receivers has completed its retuning, another group. oé-
While the receiver of, say, nodeis being retuned to a new ceivers is immediately scheduled for retuning (unless there are
wavelength, it cannot receive data, and thus, any packets dess tharl receivers left to be retuned); this process is repeated
to nodey are lost. If, on the other hand, the network nodes aumtil all receivers inS have switched to their new wavelengths
aware that nodg is in the process of retuning its receiver, theynder WLA R’. We note that a wide range of strategies can
can refrain from transmitting packets to it. In this case, packdis obtained for the different values éf 1 < L < N.
destined to nodg will experience longer delays while waiting Furthermore, by varying the value of parameteme hope to

IV. THE TRANSITION PHASE AND RETUNING STRATEGIES
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Parameterized non-overlapping greedy retuning strategy
Input: Parameter 1 < L < N, set S(R,R') of receivers that need to be retuned

1. Repeat while set S is non-empty

2. At most L receivers from set S are selected (e.g., the ones with the lowest addresses)
and taken off-line for retuning

3. Each node in the network removes packets addressed to these receivers from its buffers
(these packets are lost since they are queued for the wrong (old) wavelength)

4. Each node in the network buffers new packets destined to the receivers being retuned into the
queue corresponding to the new wavelength, but does not transmit these packets yet

5. While the L receivers are being retuned, the network nodes transmit traffic only to the remaining
N — L receivers

6. When retuning is complete, the L receivers are removed from set .S

7. end '

Fig. 4. A class of parameterized retuning strategies.

Intermediate WLAs
Initial WLA //l\ Final WLA
Al: 1,234 M:1.2 Al1,2 AM:12 AM:1.2
22:5,6,7 A2:5,6,7 A2:3,6 A2:3,6 A2:3,6,9
23:8,9,10 A3:89,10 23:4,8,9,10 23:4,8,10 A3:4,8,10
I | I I
Retune (3,4) Retune (5,7) Retune (9) Time

receiver tuning latency

transition phase

Fig. 5. Steps of a nonoverlapping retuning strategy Witk 2 for a network withV = 10, C' = 3.

determine whether there exists a tradeoff between the numbaring the transition phase, rather than shutting down a large

of receivers that can be scheduled to retune at the same tipagt of the network to simultaneously retune all the receivers

and the associated packet losses during the transition phasein S, we hope to minimize the negative effects on network
The steps taken by such a strategy during the transitiparformance while at the same time keeping the length of the

phase are illustrated in Fig. 5. It is assumed that a netwdransition phase relatively small.

with ¥ = 10 nodes and” = 3 channels is to be reconfigured

from an initial to a final WLA (as shown in the figure) and V. NUMERICAL RESULTS

that L = 2. In this case, five receivers need to be retuned, andW twudv th . i lici d retuni
S ={3,4,5,7,9}. In the first step, receivers 3 and 4 are taken € nhow study the recontiguration palicies and retuning

off-line for retuning. When retuning is complete, receivers §trateg|es introduced in previous sections using both analytical

and 4 become operational again, and receivers 5 and 7 3?(9 simulation techniques.

selected for retuning. Finally, receiver 9 is retuned, at which ) ) ) o

time the transition to the new WLA is complete. Thus, in thi§- OPtimal Reconfiguration Policies

example, the transition phase takes time equal to three timeén this section, we demonstrate the properties of the optimal
the receiver retuning latency. Note that wheneliek:| S |, policies obtained by applying the policy-iteration algorithm
i.e., for any strategy that does not permit all receiver§'ito [3] to the Markov decision process developed in the previous
retune simultaneously, the network’s WLA undergoes a serigsction. We also show how the optimal policy is affected by
of transformations that begins with the initial WL and ends the choice of reward and cost functions, and we compare the
with the new balanced WLAR'. The WLAs between the initial long-term reward acquired by the network when the optimal
and final ones (calledntermediateWLAs in Fig. 5) do not policy is employed to the reward acquired by other policies.
contain all the receivers in the network, just those that are n@it the results presented in this section are for the approximate
retuning in the current step. By using small, incremental stepkarkov process\t’ with state spacépy, D).
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options: the do-not-reconfigure option and the reconfigure op-

Ti ition Probabilit . . . . . ..
ransition Frobadily tion. The above discussion explains how to obtain the transition

0.45 probability matrix for the do-not-reconfigure option. The tran-
0.4 sition probability matrix for the reconfigure option is easy to
0o determine since we know that regardless of the vajuef the

current state, the next state will always be a balanced state, i.e.,
its DLB will be ¢¢. The individual transition probabilities from

a state{¢y,, D) to a statg¢;, D’) are then obtained by making
the same assumption that the distributionibfs independent

of the DLB ¢y,. Therefore, the transition probabilities under the
reconfigure option are

0.25

o 1=0
Pl D) |0 D= {57 150 e ©
Fig. 6. Near-neighbor model. ’

) ) ) . 1) Convergence of the Optimal Policy:et us first consider
In this study, we consider mear-neighbortraffic model. In - e following reward and cost functions:
other words, we make the assumption that if the network cur-
rently operates with a DLB equal th. and no reconfiguration A
occurs, the next transition is more likely to take the network to af(pn, D)) = —,
: : : 1+ ¢
a state with the same DLB or its two nearest neighbfgrs;

ande¢y.1 than to a DLB further away from;.. Specifically, we \yhere 4 and B are weights assigned to the rewards and costs.
assume (4), shown at the bottom of the page. This traffic modg{ese reward and cost functions can reflect performance mea-
is illustrated in Fig. 6, which p_Iots the gond|t|onal probabilityy;res such as throughput, delay, packet loss, or the control re-
Pl¢u | ¢1] that the next DLB will begy, given that the current g4ces involved in receiver retuning. For example, a reward
DLB is ¢, for K = 20 intervals. The near-neighbor modeknction of the forma/(1 + ¢) may, depending on the value
captures the behavior of networks in which the traffic matrixs parameterd, capture either the throughput or average packet

Tchanges slowly over time and abrupt changes in the traffic ps|ay experienced while the network operates with a DLB equal

tern have a low probability of occurring. As a result, a networ, ¢. On the other hand, using a cost that is proportional to the

that is perfectly balanced will not immediately become highly , berp = D(R,R’) of retunings (i.e 3(D(R, R')) = BD)
unbalanced, and vice versa. We consider a different client-serygp 4ccount for the control requirements for retuning the re-
model of communication in the next section (refer to Fig. 21) tQyjyers; or for the data loss incurred during reconfiguration. Fur-
|Ilus_trate that our approach can be used under a wide rang%grmore, parameteB can be chosen based on which of the
traffic patterns. - _ retuning strategies discussed in Section IV is employed. Thus,
Given the probabilities in (4), we let the conditional transitiopenyork designers can select in a unified fashion appropriate
probability,when no reconfiguration occurBom state(¢x, D) rewards and costs to achieve the desired balance among the var-
to state(¢, ') be equal to ious performance criteria of interest.
/ _ , We apply Howard'’s algorithm [3] to a network with = 20
Pli90 D) [ (9r, D) = Plén | dulpo ®) nodes and® = 5 wavelengths with a near-neighbor traffic
wherep - is the probability that)’ retunings will be required model similar to the one shown in Fig. 6. Our objective is to
in the next reconfiguration. The probabilitigs were measured study the effect that the number of intervals in the range
experimentally, by running a large number of simulations usifj@, C—1] of possible values of DLE has on the decisions of
the near-neighbor model and recording the number of retuninye optimal policy. As we mentioned in Section 111-B, we expect
needed at each reconfiguration instant. We also observed thattieedecisions of the optimal policy to “converge” As— .
probability that random variabl® takes on a particular value More formally, lety be a real number such thak ¢ < C—1,
is independent of the DLB,; thus (5). and letk ;¢ be the interval in whicky falls when the total number
We note that we need to obtain two different transition prolof intervals isk . Also letd"[(¢y.. , D)] be the decision of the
abilities out of each state [3], one for each of the two possibtgtimal policy for state ¢, , D) of Markov process\t’ when

B(D) = BD @

0.3, k=1,....K—-1, l=k—-1kk+1
0.1
— = k=1....K—1, l#k-1kk+1
Plg | ¢u) =4 572 (4)
LI Pk 0.45 k=0, l=1lork=K, Il=K-1

7

0.1

——, k=0, 1=2,..., Kork=K, [=0,...
(K_2)7 ) ) ) or ) )
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Fig. 7. Optimal policy decisions faW = 20,C = 5, K = 20, A = 30,andB = 1.
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Fig. 8. Optimal policy decisions faV = 20,C =5, K = 30, A = 30,andB = 1.

the number of intervals i&. We will say that the decisions of in Figs. 8 and 9, we incread€ to 30 and 40, respectively. The
the optimal policy converge if histograms shown in Figs. 7-9, as well as in other figures in
_ () this section, should be interpreted as follows. In each figure, the

A & (ny D) = dl(, D)) Ve, D (8)  -axis represents the DLB, (with a number of intervals equal

to the corresponding value df), while they-axis represents

In Figs. 7-9, we plot the decisions of the optimal policy fofhe possible values db. The vertical bar at a particular DLB
the 20-node five-wavelength network with a near-neighbog e s, has a height equal tB* such that

traffic model and for three different values &f; the weights
used in the functions (7_) were ;etm: 30 an_dB =1 Fig..7 41O (g, DY] = reconfigure D < Ditr )
corresponds to the optimal policy fé¢ = 20 intervals, while ko do not reconfigure D > D=
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Fig. 9. Optimal policy decisions fav = 20,C =5, K = 40, A = 30, B = 1.

In other words, for each value afy, there exists aetuning different network sizes, and for other reward and cost functions.
thresholdvalue D* such that the decision is to reconfiguréThese results indicate that a relatively small number of intervals
when the number of receivers to be retuned is less fhgh, is sufficient for obtaining an optimal policy.

and not to reconfigure if it is greater thd{*. Since the op-  Another important observation from Figs. 7-9 is that the re-
timal policy had similar behavior for all the different reward an&uning threshold increases with the DLB values. This behavior
cost functions we considered, its decisions will be plotted as@n be explained by noting that because of the near-neighbor
histogram similar to those in Figs. 749. distribution (refer to Fig. 6), when the network operates at states

As we can see in Figs. 7-9, the decisions of the optimal poli¥jth high DLB values, it will tend to remain at states with high

do converge [in the sense of (8)] &Sincreases. For instance,PLB values. Since the reward is inversely proportional to the

let us consider a DLB of one, which falls in the fourth intervaPLB value, the network incurs small rewards by making transi-
whenK = 20 (in Fig. 7), the sixth interval whe = 30 (in tions between such states. Therefore, the optimal policy is such

Fig. 8), and the seventh interval whéh = 40 (in Fig. 9). In that the network decides to reconfigure even when there is a

all three cases, the retuning threshold is equal to nine for théa@e number of receivers to be retuned. By doing so, the net-
intervals; therefore, the decisions of the optimal policy for th&ork pays a high cost, which, however, is offset by the fact that
three values ok are the same. On the other hand, for a DL#he network makes a transition to the balanced state with a low
of two, the retuning threshold is 14 in Fig. 7 it drops to 13 if?LB, reaping a high reward. On the other hand, when the net-
Fig. 8, the same as in Fig. 9. In other words, for a DLB of twovork is at states with low DLB, it also tends to remain at such
the decisions of the optimal policy are different whign= 20 States where it obtains high rewards. Therefore, the network is
than whenK = 30 or 40 (in the former case, the decision isess inclined to incur a high reconfiguration cost, and the re-
to reconfigure as long as the number of retunings is at most 14ning threshold for these states is lower.
while in the latter the decision is to reconfigure only when the 2) The Effect of Reward and Cost Functionis:
number of retunings is at most 13). But the important obsenvaigs. 10-12, we apply Howard's algorithm to a network
tion is that the policy decisions do not change when the numbgith N = 100 nodes and” = 10 wavelengths, operating
K of intervals increases from 30 to 40, indicating convergendander a near-neighbor model similar to the one shown in
In fact, there are no changes in the optimal policy for values bfg. 6. For this network we useff’ = 20 intervals, and we
K greater than 40 (not shown here). We have observed simiaried weightsd and B in the reward and cost functions in (7)
behavior for a wide range of values for weighisand B, for  to study their effect on the optimal policy. Specifically, we let
, B =1, and we variedd from 20 (in Fig. 10) to 35 (in Fig. 11)
That the optimal poli i i i i i i i i
different retunping thr%(;lécglc\ilﬁc?rfg:zg i%mi;;hggﬁlﬂdegg:;ﬁéglgEtihgofii? Ibb 50 .(m Fig. 12). We fl.rSt observe that the optimal policy
that we only consider cost functions that are nondecreasing functions of randsmagain a threshold pollcy for each Vall¢ﬁ; of the DLB.
variableD. As a result, if the decision of the optimal policy for astate, D,) However, asA increases, we see that the retuning threshold

is not to reconfigure, intuitively one expects the decision for State D), gssociated with each DLB value also increases. This behavior
whereD, > Dy, to also be not to reconfigure, since the reconfiguration cos

B(D>) for the latter state would be at least as large as the reconfiguration cgétthe optimal policy is in agreement with intuition since, by

B(Dy) for the former increasing4, we increase the reward obtained by taking the
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Fig. 10. Optimal policy decisions fav = 100, C' = 10, K = 20, A = 20, andB = 1.
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Fig. 11. Optimal policy decisions fav = 100, C = 10, K = 20, A = 35,andB = 1.

network to a balanced state relative to the cost of reconfigu-We now proceed to study the effect of different reward and
ration, making reconfigurations more attractive. Similarly, i€ost functions. One performance measure of interest is the
we keepA constant and increas® (a case not shown here),probability of unnecessary reconfigurations. By makifg,,
reconfiguring the network becomes less desirable, and thus #mel 5, large, and lettingx(-) be a slowly decreasing func-
retuning threshold associated with each DLB value decreassn as¢ increases, minimizing the probability of unnecessary
Overall, in our study, we have found that one can obtainraconfigurations becomes equivalent to maximizing (3). Simi-
wide variety of policies by varying the values of weights larly, the objective to minimize the probability that the portion
and B. It is up to the network operator to decide what valuesf the network that becomes unavailable due to reconfiguration
to use, and thus to make the network more or less sensitivagagreater than a certain threshal?,,,, can be achieved by
traffic changes (i.e., more or less likely to reconfigure). letting Bmin be small, lettingd,,.x be large, and selecting(-)
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Fig. 12. Optimal policy decisions fa¥ = 100, C = 10, K = 20, A = 50, andB = 1.
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Fig. 13. Cost functiom3( D) used for the policy shown in Fig. 14.

to be a function as shown in Fig. 13 (whekg,.. = 30). We Another important performance objective is to minimize the
now consider the latter cost functigi{ D) plotted in Fig. 13, probability that the network will not be able to handle the of-
while the reward function is as in (7) with = 50. In Fig. 14, fered traffic load. This is equivalent to minimizing the proba-
we show the decisions of the optimal policy for a networkility that the DLB increases beyond a maximum vaitg, .

with N = 100, C = 10, and a near-neighbor traffic modelLet ~,,., be the maximum traffic load (in packets per packet
when X = 20. As we can see, the retuning threshold nevéransmission time) that will ever be allowed into the network.
exceeds the valu®,,., = 30. Therefore, the network will By definition of the DLB in (1), the load offered to the domi-
never reconfigure when the number of retunings is greateant channel when the DLB iswill be (1 + ¢)vmax/C. Since

than 30, as expected. each channel can clear at most one packet per packet time, we
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Fig. 14. Optimal policy decisions fa¥ = 100, C' = 10, K = 20, andA = 50.
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Fig. 15. Reward functiom(¢) used for the policy shown in Fig. 16.

have that I+ ¢nax < C/ymax- Therefore, this objective cana retuning threshold equal to 100 means that the network will
be achieved by selecting(-) a function, as shown in Fig. 15 always reconfigure when the DLB becomes greater than 4.5.
(whereg¢,ax = 4.5) and lettingf,,. be small. Thus, we also Thus, although the network is not prohibited from entering a
obtained the optimal policy for the same network as above, kstate with a DLB value greater than 4.5, once doing so, in the
with the reward function shown in Fig. 15; and a cost functiomery next transition the network will reconfigure and will enter
B(D) = BD, with B = 1. The resulting policy is shown in the balanced state. Subsequently, because of the nature of the
Fig. 16, where we can see that the retuning threshold is 100 fa@ar-neighbor traffic model, the network will tend to stay at
DLB values greater than 4.5. Since the maximum number of retates with low DLB values. In effect, therefore, the probability
ceivers that will ever need to be retunedNs— C' = 90[1], that the network will be operating at states with DLB values
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Fig. 16. Optimal policy decisions fav = 100, C' = 10, K’ = 20,andB = 1.

greaterthan 4.5 is very small when the reward functionin Fig. 15  is less than or equal tb,,,,,, and it will not reconfigure if

is used. D > D,,,. We note that if we leD,,,.. = N — C (i.e.,

3) Comparison to Threshold Policiedn this section, we the maximum number of receiver that will ever need to
compare the optimal policy against three classes of threshold- be retuned [1]), these policies reduce to the class of DLB-
based policies. threshold policies. Similarly, if we let,,,. = C—1 (i.e.,

1) DLB-threshold policiesThere exists a threshold DLB the DLB threshold is equal to the maximum DLB value),
valueg.,.., such that if the system is about to make a tran- these policies become simple retuning threshold policies.
sition into a staté ey, D), ¢1. > Gmax, then the network Therefore, the two-threshold policies are the most gen-
will reconfigure and make a transition to a state with DLB ~ eral class of policies and include the DLB-threshold and
$o, regardless of the reconfiguration cost involved. Oth- ~ retuning-threshold policies as special cases.

2)

3)

erwise, no reconfiguration occurs. This class of policies The DLB-threshold and the general two-threshold policies
is not concerned with the reconfiguration cost incurre@bove define Markov processes thatauésidethe class of Mar-
Instead, it ensures that the traffic-carrying capacity of tHeovian decision processes considered in Section lll. In a Mar-
network will never fall below the valug,,i, = C/(1 + kovian decision process, there are several alternatives per state.
Grmax)- But once an alternative has been selected for a state, then tran-
Retuning-threshold policieFhis class of policies is in a Sitions from this state are always governed by the chosen alter-
sense a “dual” of the previous one, in that decisions af@tive (refer also to Fig. 3). In a DLB-threshold policy, on the
based solely on the number of retunings involved in tHether hand, the alternative selected does not depend @uthe
reconfiguration, not on the DLB. Specifically, if the netrentstate, butrather on theextstate. Therefore, the system may
work is about to make a transition, then the network wielect different alternatives when at a particular state, depending
reconfigure only if the numbeb of receivers that must On what the next state $sand similarly for the two-threshold

be retuned is less than or equal to a threstd|g,,.. If Policies. Since Howard's algorithm [3] is optimal only within

D > Dy, NO reconfiguration takes place. This class dhe class of Markovian decision processes, it is possible that
policies ensures that the portion of the network that p#hese threshold policies obtain rewards higher than the optimal
comes unavailable due to reconfiguration never excedeglicy determined by the algorithm. Retuning-threshold poli-
Do cies, however, are such that there is a unique alternative per state,
Two-threshold policiesThis class of policies attemptsS0O we expect them to perform no better than the optimal pélicy.

to combine the objectives of the two classes of policies

above. Specifically, there are two thresholgls,, and SIf the next state is one with a DLB less than the threshold, the alternative
D, .. If the system is about to make a transition into aelectedis notto reconfigure; otherwise the alternative selected is to reconfigure.

state(d)k D) then the network will reconfigure i > 6As we have seen, the optimal policies are in fact threshold policies with a
D), .

. . . different retuning threshold for each DLB value. Therefore, the optimal policy
‘/.)max- cherW|se, iy, < ¢111a>§! the network will recon- will in general perform better than a retuning policy with the same threshold for
figure if the numberD of receivers that must be retunedhll DLB values.
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Fig. 17. Policy comparisony = 100,C = 10, K = 20, A = 50,andB = 1.

All the results presented in this section are for a netwogiots of two-threshold policies corresponds to a different re-
with N = 100 nodes,C = 10 wavelengths, a near-neighbortuning threshold (namely),..x = 40, 32, and24) and varying
traffic model, andK” = 20 intervals. The reward and cost func-DLB thresholds. Also, recall that the DLB-threshold policy is
tions considered are those in (7). In Fig. 17, we compare thguivalent to a two-threshold policy with a retuning threshold
optimal policy obtained by Howard’s algorithm [3] to a numbeequal toN — C = 90.
of retuning-threshold policies. The figure plots the average The most interesting observation from Fig. 18 is that, for
long-term reward acquired by each of the policies against thertain values of the DLB-threshold, the DLB-threshold policy
retuning thresholdD,,.... The horizontal line corresponds toand the two-threshold policy with retuning threshdh,., =
the reward of the optimal policy, which, clearly, is independerd achieve a higher reward than the optimal policy obtained
of the retuning threshold. Each point of the second line through Howard's algorithm. This result is possible because, as
the figure corresponds to the reward of a retuning-thresholek discussed earlier, the class of two-threshold policies is more
policy with the stated threshold value. As we can see, rgeneral than the class of policies for which Howard’s algorithm
tuning-threshold policies obtain a reward that is significantlig optimal. On the other hand, we note that the reward of the
less than that of the optimal policy, as expected. Furthermof, B-threshold policy depends strongly on the DLB threshold
the reward of retuning-threshold policies varies depending osed and that the reward of the two-threshold policies depends
the actual threshold used. Since the best threshold dependswthe values of both thresholds. Although within a certain range
system parameters such as the traffic patterns and the rewafrthese values the threshold policies perform better than the op-
and cost functions and the associated weights, it is impossitileal policy, the latter outperforms the former for most threshold
to know the best threshold to use unless one experiments witiues. Therefore, threshold selection is of crucial importance
a large number of threshold values. for the threshold policies, but searching through the threshold

In Fig. 18, we compare the optimal policy to a DLB-thresholdpace can be expensive. The optimal policy, however, guaran-
policy and a number of two-threshold policies. For these resultses a high overall reward and is also simpler to implement since
we used4d = 50 andB = 1 as the values for the weights in thethe network does not need ltmok aheado the next state to de-
reward and cost functions, respectively, in (7). This time, wade whether or not to reconfigure.
plot the reward of each policy against the DLB threshold value; Fig. 19 is similar to Fig. 18 in that we again compare the
similar to Fig. 17, the optimal policy is independent of the DLBptimal policy against a DLB-threshold and two-threshold
threshold, resulting in a horizontal line in Fig. 18. We also plgiolicies. For these experiments, however, we have dse20
the reward of DLB-threshold policies with varying DLB threshandB = 1 in the reward and cost functions, respectively, of (7).
olds and of a family of two-threshold policies. Each of the threfs we can see, the reward of the optimal policy is strictly higher
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Fig. 18. Policy comparisony = 100, C = 10, K = 20,4 = 50,andB = 1.

than that of threshold policies across all possible threshdktrms of specific performance measures such as packet delay
values. These results demonstrate that DLB- or two-threshaldd packet loss. Second, we want to evaluate the various re-
policies do not always perform better than the optimal policfining strategies of Section IV by studying the effect of param-
and their performance depends on the system parameters anelferZ in the algorithm shown in Fig. 4. To this end, we have
the reward and cost functions. Furthermore, it is not possildeveloped a simulator of a WDM network that implements the
to know ahead of time under what circumstances the threshoddonfiguration policies and retuning strategies described ear-
policies will achieve a high reward. Equally important, if thdier. In the following, we present the most important features of
network’s operating parameters change, threshold selectmur simulator; for a detailed description, the reader is referred
must be performed anew, since, for instance, the DLB threshadd[2].
that maximizes the reward of the DLB-threshold policy in Each channel in the network is modeled as an OC-48 (2.48
Fig. 18 results in very poor performance in Fig. 19, and vid8b/s) link. The traffic between nodes in the network follows
versa. a client-server model of communication. Each node is either
Overall, the results presented in this section demonstrate thaterver or a client, but the number of servers is considerably
the optimal policy obtained through Howard’s algorithm caamaller than the number of clients. Each client has two types of
successfully balance the two conflicting objectives, namely, thmffic sources. The first source creates the background traffic
DLB and the number of retunings, and always achieves a highthe network by generating packets to other client nodes; the
reward across the whole range of the network’s operating parival rate of this traffic is relatively low. The second source
rameters. We have also shown that by appropriately selectmgdels the communication of this client with its current server,
the reward and cost functions, the optimal policy can be tand its arrival rate is significantly higher than that of the back-
lored to specific requirements set by the network designer. Qround source. A source, regardless of its type, is implemented
the other hand, pure threshold policies, although they can sorfadlowing the bursty source model recommended by the ATM
times achieve high reward, are less flexible, and they intréorum for simulating VBR-rt traffic. The packet size in the net-

duce an additional degree of complexity, namely, the problemork was taken to be equal to the length of an ATM cell. The
nodes access the various channels using the HIRARE pro-

of threshold selection.
tocol [11], which in turn uses the algorithms in [10] to schedule

B. Simulation Stud packets for transmis_sion._ _ _
4 We created variations in the traffic pattern by using the fol-
The objective of our simulation study is twofold. First, wdowing technique. Initially, each client node is associated with

want to demonstrate the benefits of dynamic reconfigurationame particular server. Periodically, the assignment of clients to
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Fig. 19. Policy comparisony = 100, C = 10, K = 20, A = 20, andB = 1.

servers is modified to reflect changes in the needs of the applit

tions running at the client (for instance, a client may access af

server to edit a file and then a Web server to fetch a Web pag ~ Transition Probability
This change in client-server assignments creates a shift in 1 1
traffic pattern and may result in an unbalanced network whe
one or more channels carry a large fraction of the overall traffi
Network nodes accumulate traffic data for each source—desti
tion pair over 2 ms intervals, using the in-band control packe
of HiPeR<4 [11]. These data are used to compute the curre
DLB of the network and to determine whether reconfiguratio
is needed. As a result, successive reconfigurations are alw;
spaced at least 2 ms apart. However, no necessary reconfig!
tions were ever delayed, since in our model each client-sen
assignment lasts for at least 20 mns.

We collected experimental traffic data for the client-serve
communication model, from which we built a conditional dis-
tribution of DLB values for’X = 20 intervals. This conditional Fig- 20. Conditional distribution of DLB values in the client-server model.
distribution P[¢y | ¢:] is plotted in Fig. 20. As we can see,
this distribution is quite different from the near-neighbor disslients. There ar€’ = 5 channels in the network with an ag-
tribution of Fig. 6. Using the reward and cost functions in (7)gregate capacity of 12.4 Gb/s. The fast tunable transmitters are
the optimal policy obtained by Howard’s algorithm is shown i®ssumed to take two packet times (342 ns for 53-byte packets
Fig. 21. This optimal policy was used throughout this sectionand OC-48 speeds) to switch wavelengths. Each simulation run

For the purposes of this study, we consider a WDM netwotRrminates when a total of I@ackets are successfully received
with N = 70 nodes, of which seven are servers and 63 aby their respective destinations. In the following, we describe

two sets of experiments. First, we compare the average packet

"While a change in the client-server assignment is likely to create a coglelay and packet loss in networks with and without dynamic re-
pletely new traffic pattern and lead to reconfiguration, the behavior ofindividuebnﬁguraﬂon_ Second, we compare various retuning strategies
sources within a given assignment also causes (smaller) changes in the overal . .
traffic. The accumulation of a large number of these changes may create ll'ﬂé)rder to determine the effect of several important parameters
need for a reconfiguration within a given client-server assignment. on network performance.
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Fig. 22. Average packet delay in networks with and without reconfiguration capabilities.

1) Benefits of Dynamic Network Reconfiguratiode network, reconfigurations are governed by one of two policies:
study the performance of the network with and without recothe optimal MDP policy depicted in Fig. 21 or a DLB-threshold
figuration capabilities. When no reconfiguration is allowed, thgolicy (see Section V-A3) with a DLB threshold equal to 0.8.
assignment of receivers to wavelengths (WLA) remains fixdebr either policy, the retuning strategy in Fig. 4 with= N
throughout the simulation (a static network). In a dynamis used, i.e., all receivers needing retuning are simultaneously
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Fig. 23. Packet loss in networks with and without reconfiguration capabilities.

retuned in one step. The receiver tuning latency is assumedigmration. Recall that when a receiver is to be retuned, packets
be equal to 1000 packet times (i.e., three orders of magnitutlerently buffered for it at the various nodes are discarded since
greater than the transmitter latency), while the buffer capacityey are buffered for transmission on the wrong (old) wave-
at each network node is fixed at 200 packets per channel. length. Thus, this loss represents the penalty incurred for having
In Fig. 22, we plot the average packet delay for each net-network that is traffic-adaptive. However, at higher loads, the
work as a function of total network throughput. As we can sestatic network experiences quite high losses due to buffer over-
the networks with a dynamic reconfiguration capability clearlffows. Since the WLA is fixed in a static network, when the
outperform the one without such capability. As the load apraffic patterns change such that one channel carries a large part
proaches and exceeds 50% of the total channel capacity (eqfahe overall traffic, buffers for this channel quickly fill up in
to 12.4 Gb/s), the delay in the static network increases veail network nodes. Reconfigurable networks, however, period-
rapidly to nearly 80Q:s. On the other hand, the average packétally rebalance the traffic load, preventing unnecessary buffer
delay in the dynamically reconfigurable networks grows muabverflows. As a result, at higher loads, packet losses are signif-
slower and remains under 1Q@ for the loads shown. Also, icantly lower than in the static network. Again, packet loss is
the network using the optimal reconfiguration policy achievdswest when the optimal policy is used; at the highest load in
lower average packet delays than those of the network using Eig. 23, the packet loss with the optimal policy is one order of
DLB-threshold policy. These results can be explained by the staagnitude lower than the loss in the static network.
bility condition derived in [11], which states that the maximum Fig. 24, which shows the maximum buffer occupancy for
sustained traffic load is inversely proportional to the averaglee various traffic loads, provides further support to these
DLB of the network. By periodically rebalancing the traffic loacconclusions. At low loads, buffer occupancy levels for the
across the channels, reconfigurable networks maintain a sigmsifatic network are low, but at high loads maximum buffer
icantly lower average DLB than static networks, allowing theraccupancy equals the buffer capacity, indicating packet loss
to accommodate higher traffic loads. Furthermore, the optindiie to overflows. On the other hand, buffer occupancy for the
policy achieves a lower average DLB than the DLB-thresholéconfigurable networks is low at low loads, confirming that
policy, resulting in lower delays. the losses shown in Fig. 23 are indeed due to reconfiguration.
In Fig. 23, we plot the percentage of packets lost in the thréarthermore, the maximum buffer occupancy when the optimal
networks. As we can see, at low loads, the static network ipelicy is used is quite low and never equals the buffer capacity
curs no losses, while the reconfigurable networks do experierioethe range of loads shown. This fact explains the low delays
some packet loss. This loss is not due to buffer overflows; im Fig. 22 and indicates that this network never loses any
stead, it takes place during the transition phase due to recpackets due to buffer overflows and can accommodate even
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Fig. 24. Maximum buffer occupancy in networks with and without reconfiguration capabilities.

higher loads. When the DLB-threshold policy is used, thdis section, the buffer capacity at each node was set to such a
maximum buffer occupancy is higher overall and equals ttégh value that there were never any buffer overflows. There-
capacity for the highest load shown. fore, all the losses shown were entirely due to the transition
We conclude that under moderate-to-high traffic loads, thphase during reconfiguration.
performance of a WDM network, in terms of both average In Figs. 25-27, we plot the average packet delay, packet loss,
packet delay and packet loss, would significantly benefit fromnd maximum buffer occupancy, respectively, as a function of
having a dynamic reconfiguration capability. Furthermore, thigarameter. (recall that in Fig. 4,0, corresponds to the max-
improvement in performance is achieved with a decrease in theum number of receivers that can be simultaneously retuned in
amount of buffer space required. These results clearly demame step of the transition phase). As we can see, as the receiver
strate that by adapting itself to prevailing traffic conditionguning latency increases, all three performance measures are
the novel RTT-STR architecture introduced in this paper caegatively affected. This behavior can be explained by noting
provide a cost-effective solution to building high-performancehat the longer it takes each receiver to retune, the longer a
WDM networks. They also illustrate the importance of emgroup of receivers will be off-line during the transition phase
ploying an optimal reconfiguration policy, since the networknd the longer it will take to reconfigure the network for a given
using the optimal policy clearly outperforms the one with thealue of L. While a receiver is not operational, newly arriving
DLB-threshold policy. packets destined for it have to be buffered. Thus, for higher re-
2) Comparison of Retuning Strategie¥Ve now compare tuning latency values, the maximum buffer occupancy increases
the various retuning strategies in the class shown in Fig.(Big. 27) leading to higher losses (Fig. 26) as well as higher de-
in terms of the same performance metrics considered in tlags (Fig. 25). We also note, however, that within the range of
previous section, namely, average packet delay, packet loss, ealdes forLZ for which the best performance is observed over
maximum buffer occupancy. In our study, we only consider all three measures (i.6:,< L < 15), the curves corresponding
reconfigurable network employing the optimal policy of Fig. 210 a tuning latency of 2000 are very close to those for a latency
and operating under an offered load of 7 Gb/s (the maximumh 1000, and even the curves for a latency of 5000 are not sig-
load shown in Figs. 22—24). We have obtained results for threicantly different. Furthermore, the average packet delay, the
values of the receiver tuning latency, corresponding to 10Qfacket loss, and the maximum buffer occupancy for a latency of
2000, and 5000 packet transmission times, in order to study @00 andL = 10 are lower than the corresponding values for a
effect of this important parameter on the performance of tiid_B-threshold policy in Figs. 22—24. This result indicates that
various retuning strategies. For the experiments presentedfian appropriate value fof. is used, then even very slow (and,



BALDINE AND ROUSKAS: TRAFFIC ADAPTIVE WDM NETWORKS 453

1200 Y T T T T T T T T
Receiver Tuning Latency = 1000 <—
o 2000 -+-
: 5000 -8--
1000 :
’G !
o '
o 800 u
S '
E
>
©
® '
9 800 | : 5
[¢4] i
x
Q
o
a
(] |
2 :
5 400 | : e
> :
< :
5.
200 % ]
KN\E --------------------
eI AR LT B
o i ] 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Fig. 25. Average packet delay comparison of retuning strategies.

consequently, inexpensive) tunable devices can be adequate fon order to address the first issue, we developed a for-
reaping the benefits of reconfiguration. mulation based on Markov decision process theory. Given
Finally, from the three figures, we observe that the two esome information regarding the traffic patterns in the net-
treme strategies obtained for large valued.df.e., simultane- work (which can be obtained empirically), the formulation
ously tuning all required receivers at once) ahd= 1 (i.e., allows us to apply existing algorithms (specifically, Howard’s
tuning one receiver at a time) do not perform as well as othglicy-iteration algorithm) to obtain (off-line) optimal dy-
strategies obtained for values bibetween one and/. We can namic reconfiguration policies. These policies can then be
explain this result by considering each of the two extreme strafgsed during the operation of the network (on-line) to deter-
gies separately. When all of the receivers are allowed to retughe the instants at which reconfiguration must take place.
at the same time, the network takes the shortest possible tifig policies can be fine-tuned to strike the desired balance
to reconfigure to an optimal WLA; however, during this time etween two important but conflicting objectives: the degree
large number of receivers are not operational. As a result, e\§Noad balancing (which, if considered in isolation, would be
though average packet delay is very low due to a short trangjstimized by reconfiguring any time there is a slight change
tion phase, packet losses are relatively high. When the netwatkye traffic pattern) and the degree of network unavailability
is only allowed to retune the receivers one at a time, the trangis captured by the number of transceiver retunings (which

tion phase is the longest among gll strategies. CO“Seq}Je”t'ywﬂwd be optimized by never reconfiguring the network). Our
network operates under a suboptimal WLA for a long time, ar?grmulation provides two distinct tools for fine-tuning the

performance §uffers_|n t_e rms of both pac_ket d_e lay an_d loss. T&ﬁicies: the cost functions (which can be selected to reflect
results in the figures indicate that strategies with medium valu

o , ifi f h ioh i
for L (specifically, L = 5, 10, 15) achieve the best overall |oer-§r§eCI ic performance measures) and the weights applied to
formance each objective.

For the second issue, we presented a class of parameter-
ized retuning strategies for carrying out the reconfiguration
phase. Under these strategies, the transceivers to be retuned are

We have conducted an in-depth study of the reconfiguratignouped into sets, and the transceivers in each set are simultane-
problem in traffic-adaptive WDM networks. Our objective wasusly taken off-line for retuning. Using simulation, we explored
to investigate three open issues: how frequently to reconfigute tradeoffs between the length of the reconfiguration phase
the network, how to structure the reconfiguration phase, afwhich would be kept short if all transceivers were grouped in
how to quantify the benefits of reconfiguration to the network single set) and the portion of network resources that become
in terms of measurable performance parameters. unavailable at any given time (which would be optimized if

VI. CONCLUDING REMARKS
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each set consists of a single transceiver). While the relatitening latency, our results demonstrate that neither of the two
performance of the strategies is affected by the transceiextreme strategies is optimal. Our findings indicate that the



BALDINE AND ROUSKAS: TRAFFIC ADAPTIVE WDM NETWORKS 455

strategies with the best overall performance are those that af®] G.N.Rouskasand V. Sivaraman, “Packet scheduling in broadcast WDM

in the middle of the spectrum between the two extremes. networks_ with arbitrary transceiver tuning latencidgEE/ACM Trans.
Finall . . lati h tified the b fits of Networking vol. 5, pp. 359-370, June 1997.
Inally, using simulation, we have quantine € beneits o [11] V. Sivaraman and G. N. Rouskas, “A reservation protocol for broadcast

reconfiguration in terms of important performance measures  WDM networks and stability analysisComput. Networksvol. 32, no.
such as average packet delay and packet loss. Specifically, we 2. Pp- 211-227, Feb. 2000.

have observed that at moderate-to-high traffic loads, a network

that employs our optimal reconfiguration policies significantly

outperforms static networks (no reconfiguration) or networks ) ) ) L .
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