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Abstract—This paper studies the issues arising in the reconfig-
uration phase of broadcast optical networks. Although the ability
to dynamically optimize the network under changing traffic con-
ditions has been recognized as one of the key features of multi-
wavelength optical networks, this is the first in-depth study of the
tradeoffs involved in carrying out the reconfiguration process. We
develop and compare reconfiguration policies to determinewhen
to reconfigure the network, and we present an approach to carry
out the network transition by describing a class of strategies that
determine how to retune the optical transceivers. We identify the
degree of load balancing and the number of retunings as two im-
portant, albeit conflicting, objectives in the design of reconfigura-
tion policies, naturally leading to a formulation of the problem as
a Markovian decision process. Consequently, we develop a system-
atic and flexible framework in which to view and contrast recon-
figuration policies. We show how an appropriate selection of re-
ward and cost functions can be used to achieve the desired bal-
ance among various performance criteria of interest. We conduct a
comprehensive evaluation of reconfiguration policies and retuning
strategies and demonstrate the benefits of reconfiguration through
both analytical and simulation results. The result of our work is
a set of practical techniques for managing the network transition
phase that can be directly applied to networks of large size. Al-
though our work is in the context of broadcast networks, the re-
sults can be applied to any wavelength-division multiplexing net-
work where it is necessary to multiplex traffic from a large user
population into a number of wavelengths.

Index Terms—Broadcast optical networks, Markov decision
process, reconfiguration policies, wavelength-division multi-
plexing (WDM).

I. INTRODUCTION

ONE OF the key features of multiwavelength optical net-
works isrearrangeability[4], i.e., the ability to dynam-

ically optimize the network for changing traffic patterns, or to
cope with failure of network equipment. This ability arises as a
consequence of the independence between the logical connec-
tivity and the underlying physical infrastructure of fiber glass.
By employing tunable optical devices, the assignment of trans-
mitting or receiving wavelengths to the various network nodes
may be updated on the fly, allowing the network to closely track
changing traffic conditions.

While the rearrangeability property makes it possible to de-
sign traffic-adaptive self-healing networks, the reconfiguration
phase will interfere with existing traffic and disrupt network per-
formance, causing a degradation of the quality of service per-
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ceived by the users. The issues that arise in reconfiguring a light-
wave network by retuning a set of slowly tunable transmitters or
receivers have been studied in the context of multihop networks
in [5], [6], and [9]. In [5], the problem of obtaining a virtual
topology that minimizes the maximum link flow, given a set
of traffic demands, was studied, while in [6], algorithms were
developed for minimizing the number of branch-exchange op-
erations required to take the network from an initial to a target
virtual topology, once the traffic pattern changes. The objective
of [9], on the other hand, was to obtain near-optimal policies
to dynamically determine when and how to reconfigure the net-
work.

In this paper, we study the reconfiguration issues arising
in single-hop lightwave networks, an architecture suitable for
local- and metropolitan-area networks (LANs and MANs)
[7]. The single-hop architecture employs wavelength-division
multiplexing (WDM) to provide connectivity among the
network nodes. The various channels are dynamically shared
by the attached nodes, and the logical connections change on
a packet-by-packet basis creating all-optical paths between
sources and destinations. Thus single-hop networks require
the use of rapidly tunable optical lasers and/or filters that can
switch between channels at high speeds.

When tunability only at one end, say, at the transmitters,
is employed, each fixed receiver is permanently assigned to
one of the wavelengths used for packet transmissions. In a
typical near-term WDM environment, the number of chan-
nels supported within the optical medium is expected to be
smaller than the number of attached nodes. As a result, each
channel will have to be shared by multiple receivers, and the
problem of assigning receive wavelengths arises. Intuitively,
a wavelength assignment (WLA) must be somehow based on
the prevailing traffic conditions. More specifically, the stability
condition, derived in [11], for the HiPeR-reservation protocol
for broadcast WDM networks suggests that in determining
an appropriate WLA, the objective should be to balance the
offered load across all channels, such that each channel carries
an approximately equal portion of the overall traffic.1 But with
fixed receivers, any WLA is permanent and cannot be updated
in response to changes in the traffic pattern.

Alternatively, one can useslowly tunable,rather than fixed,
receivers. We will say that an optical laser or filter is rapidly
tunable if its tuning latency (i.e., the time it takes to switch from
one wavelength to another) is on the order of a packet trans-

1This result is intuitive and has been accepted by the research community for
years. However, by deriving a stability condition for HiPeR-` [11], our study was
the first to quantify the effect of load balancing on the performance of broadcast
optical networks.
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mission time at the high-speed rates at which optical networks
are expected to operate. Slowly tunable devices, on the other
hand, have tuning times that can be significantly longer. As a
result, these devices cannot be assumed “tunable” at the media
access level (i.e., for the purposes of scheduling packet trans-
missions), as this requires fast tunability. Motivation for the use
of slowly tunable lasers or filters is provided by two factors.
First, they can be significantly less expensive than rapidly tun-
able devices, making it possible to design lightwave network ar-
chitectures that can be realized cost effectively. Second, the vari-
ation in traffic demands is expected to take place over larger time
scales (several orders of magnitude larger than a single packet
transmission time). Hence, even very slow tunable devices will
be adequate for updating the WLA over time to accommodate
varying traffic demands.

Assuming an existing WLA and some information about the
new traffic demands, a new WLA, optimized for the new traffic
pattern, must be determined. We considered this problem in [1],
and we proposed an approach to reconfiguring the network that
is minimally disruptive to existing traffic. Specifically, we de-
vised theGLPTalgorithm for obtaining a new WLA such that
a) the new traffic load is balanced across the channels and b) the
number of receivers that need to be retuned to take the network
from the old to the new WLA is minimized. The specifications
of GLPT include aknobparameter, which provides for tradeoff
selection between load balancing and number of retunings. In
terms of load balancing, the WLA obtained by GLPT is guaran-
teed to be no more than two times away from the optimal one,
in the worst case, regardless of the knob value used. GLPT also
leads to a scalable approach to reconfiguring the network, since
it tends to select the less utilized receivers for retuning, and since
for certain values of the knob parameter the expected number of
retunings scales with the number of channels,not the number of
nodes in the network. For more details on the operation and per-
formance of the GLPT algorithm, the reader is referred to [1].

During the reconfiguration phase, while the network makes
a transition from one WLA to another, some cost is incurred in
terms of packet delay, packet loss, packet desequencing, and the
control resources involved in receiver retuning. Clearly, receiver
retunings should not be very frequent, since unnecessary retun-
ings affect the performance encountered by the users. Hence,
it is desirable to minimize the number of network reconfigura-
tions. However, postponing a necessary reconfiguration also has
adverse effects on the overall performance. Since the network
does not operate at an optimal point in terms of load balancing,
it takes longer to clear a given set of traffic demands, causing
longer delays and/or buffer overflows, as well as a decrease in
the network’s traffic carrying capacity (refer also to the stability
condition in [11]). Similarly, if the decisions are made merely by
considering the degree of load balancing, even tiny changes in
the traffic demands can lead to constant reconfiguration, thereby
significantly hurting network performance. Consequently, it is
important to have a performance criterion that can capture the
above tradeoffs in an appropriate manner and allow their simul-
taneous optimization.

In this paper, we develop a novel, systematic, and flexible
framework in which to view and contrast reconfiguration poli-
cies. Specifically, we formulate the problem as a Markovian de-

cision process and show how an appropriate selection of reward
and cost functions can achieve the desired balance between var-
ious performance criteria of interest. However, because of the
huge state space of the underlying Markov process, it is im-
possible to directly apply appropriate numerical methods to ob-
tain an optimal policy. We therefore develop an approximate
model with a manageable state space, which captures the perti-
nent properties of the original model. We also study the issues
that arise during the transition phase and we present a class of
retuning strategies. Finally, we present a comprehensive evalu-
ation of reconfiguration policies and retuning strategies through
both analytical and simulation techniques.

In Section II, we present a model of the broadcast WDM net-
work under study. In Section III, we formulate the reconfigura-
tion problem as a Markovian decision process, and we discuss
the issues involved in obtaining an optimal policy. In Section IV,
we describe a class of retuning strategies for taking the network
from the old to the new WLA. We present numerical results in
Section V and conclude this paper in Section VI.

II. THE BROADCAST WDM NETWORK

We consider a packet-switched single-hop lightwave network
with nodes, and one transmitter-receiver pair per node. The
nodes are physically connected to a passive broadcast optical
medium that supports wavelengths, . Both
the transmitter and the receiver at each node are tunable over the
entire range of available wavelengths. However, the transmit-
ters arerapidly tunablewhile the receivers areslowly tunable.
We will refer to this tunability configuration, shown in Fig. 1,
as rapidly tunable transmitter, slowly tunable receiver(RTT-
STR). Although we will only consider RTT-STR networks in
this paper, we note that all our results can be easily adapted to the
dual configuration, STT-RTR. Further, the results can be applied
to any WDM network where it is necessary to multiplex traffic
from a large user population into a number of wavelengths, and
they are not limited to broadcast networks.

We represent the current traffic conditions in the network by
an traffic demand matrix . Quantity could
be a measure of the average traffic originating at nodeand ter-
minating at node, or it could be the effective bandwidth [8] of
the traffic from to . As traffic varies over time, the elements
of matrix will change. This variation in traffic takes place at
larger scales in time; for instance, we assume that changes in
the traffic matrix occur at connection request arrival or termi-
nation instants. We also assume that the current matrixcom-
pletely summarizes the entire history of traffic changes, so that
future changes only depend on the current values of the elements
of .

During normal operation, each of the slowly tunable receivers
is assumed to be fixed to a particular wavelength. Let

be the wavelength currently assigned to receiver
. A WLA is a partition of the set

of nodes, such that
, is the subset of nodes currently receiving on

wavelength . This WLA is known to the network nodes, and
it is used to determine the target channel for a packet, given the
packet’s destination. The network operates by having each node
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Fig. 1. A broadcast WDM network withN nodes andC channels.

employ a media access protocol, such as HiPeR-, that requires
tunability only at the transmitting end. Nodes use HiPeR-to
make reservations, and can schedule packets for transmission
using algorithms that can effectively mask the (relatively short)
latency of tunable transmitters [10].

We now define thedegree of load balancing(DLB)
for a network with traffic matrix operating under WLA as

(1)
The right-hand side of (1) represents the bandwidth requirement
of the dominant (i.e., most loaded) channel, while the second
term in the left-hand side of (1) represents the lower bound, with
respect to load balancing, for any WLA for traffic matrix.
Thus, the DLB is a measure of how far away WLAis from the
lower bound. If , then the load is perfectly balanced and
each channel carries an equal portion of the offered traffic, while
when , the channels are not equally loaded. In other words,
the DLB characterizes the efficiency of the network in meeting
the traffic demands denoted by matrixwhile operating under
WLA : the higher the value of, the less efficient the WLA.

In order to more efficiently utilize the bandwidth of the op-
tical medium as traffic varies over time, a new WLA may be
sought that distributes the new load more equally among the
channels. We will refer to the transition of the network from
one WLA to another asreconfiguration. In general, we assume
that reconfiguration is triggered by changes in the traffic matrix

. When such a change occurs, the following actions must be
taken.

1) A new WLA for the new traffic matrix must be deter-
mined.

2) A decision must be made on whether or not to reconfigure
the network by adopting the new WLA.

3) If the decision is to reconfigure, the actual retuning of
receivers must take place.

The first issue was addressed in [1], where we developed the
GLPT algorithm. It takes as input the current WLAand the

new traffic matrix , and determines the new WLA. Section III
addresses the problem of determining whether the changes in
traffic conditions warrant the reconfiguration of the network to
the new WLA, and Section IV studies the issue of receiver re-
tuning.

III. M ARKOV DECISION PROCESSFORMULATION

A. Reconfiguration Policies

We define the state of the network as a tuple . is
the current WLA, and is a matrix representing the prevailing
traffic conditions. Changes in the network state occur at instants
when the matrix is updated. Recall that we have assumed
that future traffic changes only depend on the current values
of the elements of , a reasonable assumption when the traffic
is not characterized by long-range dependencies. Therefore, the
process is a semi-Markov process. Let be the process
embedded at instants when the traffic matrix changes. Then,
is a discrete-time Markov process. Our formulation is in terms
of the Markov process .

A network in state will enter state if the
traffic matrix changes to . Implicit in the state transition is
that the system makes a decision to reconfigure to WLA. In
order to completely define the Markovian state transitions asso-
ciated with our model, we need to establishnext WLAdecisions.
The decision is a function of the current state and is denoted by

. Setting implies that if the system
is in state and the traffic demands change, the network
should be reconfigured into WLA . Note that WLA
can be the same as, in which case the decision is not to recon-
figure. Therefore, for each state , there are two alterna-
tives: either the network reconfigures to WLA obtained by
the GLPT algorithm with and as inputs (in which case the
new state will be ) or it maintains the current WLA (in
which case the new state will be ). The set of decisions
for all network states defines areconfiguration policy.

To formulate the problem as a Markov decision process, we
need to specify reward and cost functions associated with each
transition. Consider a network in state that makes a tran-
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sition to state . The network acquires animmediate ex-
pected rewardequal to , where is a nonin-
creasing function of , the DLB of WLA with re-
spect to the new traffic matrix . Also, if , a recon-
figuration costequal to is incurred, where is
a nondecreasing function of the number of receivers that have
to be retuned to take the network to the new WLA. In other
words, a switching cost is incurred each time the network makes
a decision to reconfigure. We assume that the rewards and costs
are bounded, i.e.,

(2)

where , , , and are real numbers.
The problem is how to reconfigure the network sequentially

in time, so as to maximize the expected reward minus the recon-
figuration cost over an infinite horizon. Let denote
the state of the network immediately after the-th transition,

Let also be the set of admissible policies. The
network reconfiguration problem can then be formally stated as
follows (note that ).

Problem 3.1: Find an optimal policy that maximizes
the expected reward

(3)
The first term on the right-hand side of (3) is the reward ob-

tained by using a particular WLA, and the second term is the
cost incurred at each instant of time that reconfiguration is per-
formed. The presence of a reward that increases as the DLB
decreases (i.e., as the load is better balanced across the chan-
nels) provides the network with an incentive to associate with
a WLA that performs well for the current traffic load. On the
other hand, the introduction of a cost incurred at each reconfig-
uration instant discourages frequent reconfigurations. Thus, the
overall reward function captures the fundamental tradeoff be-
tween the DLB and frequent retunings involved in the reconfig-
uration problem. In Section V, we motivate the above formula-
tion by showing how an appropriate selection of reward and cost
functions yields various performance criteria of interest. Typi-
cally, such selection can be based on either measurements of an
existing network or simulations.

For the case , the problem of finding an optimal
policy is trivial, since it is optimal for the network to associate
with the WLA that best balances the offered load at each instant
in time. This is because the evolution of the traffic matrixis not
affected by the network’s actions and reconfigurations are free.
However, when , there is a conflict betweenfuture
reconfiguration costs incurredandcurrent reward obtained,and
it is not obvious as to what constitutes an optimal policy. We also
note that as , the optimal policy would be to never
reconfigure, since this is the only policy for which the expected
reward in (3) would be nonnegative. Again, however, the point
(i.e., the smallest value of ) at which this policy becomes
optimal is not easy to determine, as it depends on the transition
probabilities of the underlying Markov chain.

Consider an ergodic, discrete-space discrete-time Markov
process with rewards and a set of alternatives per state that
affect the probabilities and rewards governing the process.
Howard’spolicy-iterationalgorithm [3] can be used to obtain
a policy that maximizes the long-term reward in (3) for such a
process. Initially, an arbitrary policy is specified from which all
state transition rates are determined. The algorithm then enters
its basic iteration cycle, which consists of two stages. The first
stage is thevalue-determination operation,which evaluates
the current policy. In the second stage, thepolicy-improvement
routine uses a set of criteria to modify the decisions at each
state and obtain a new policy with a higher reward than the
original policy. This new policy is used as the starting point for
the next iteration. The cycle continues until the policies in two
successive iterations are identical. At this point, the algorithm
has converged, and the final policy is guaranteed to be optimal
with respect to maximizing the reward in (3).

A difficulty in applying the policy-iteration algorithm to the
Markov process is that its running time per iteration is domi-
nated by the complexity of solving a number of linear equations
on the order of the number of states in the Markov chain. Even
if we restrict the elements of traffic matrixto be integers2 and
impose an upper bound on the values they can take, the poten-
tial number of states is so large that the policy-iteration
algorithm cannot be directly applied to anything but networks
of trivial size. In the next section, we show how to overcome
this problem by making some simplifying assumptions that will
allow us to set up a new Markov process whose state space is
manageable.

B. Alternative Formulation

Consider a network in state , and a new traffic matrix
for which the WLA obtained with the GLPT algorithm is

. A closer examination of the reward function in (3) reveals
that the immediate reward acquired when the network makes
a transition does not depend on the actual values of the traffic
elements or the actual WLAs involved, but only on the values of
the DLBs and and the distance .
Thus, we make the simplifying assumption that the decision to
reconfigure will also depend on the DLBs and the distance only.
This is a reasonable assumption, since it is the DLB, not the
actual traffic matrix or WLA, that determine the efficiency of
the network in satisfying the offered load. Similarly, it is the
number of retunings that determines the reconfiguration cost,
not the actual WLAs involved.

Based on these observations, we now introduce a new process
embedded, as Markov process, at instants when the traffic
matrix changes, as illustrated in Fig. 2. The state of this process
is defined to be the tuple , where is the DLB achieved by
the current WLA with respect to the current traffic matrix and

is the number of retunings required if the network were to
reconfigure. Transitions in the new process have the Markovian
property, since they are due to changes in the traffic matrix that,
in turn, are Markovian. However, as defined, the process is a
continuous-state process since, in general, the DLBis a real

2If the elements ofT are real numbers, thenM becomes a continuous-state
process and the policy-iteration algorithm cannot be applied.
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Fig. 2. State of the new Markov processM .

number. In order to apply Howard’s policy-iteration algorithm,
we need a discrete-state process. We obtain such a process by
using discrete values for random variableas follows.

By definition [refer to (1)], the DLB can take any real
value between zero and , where is the number
of channels in the network.3 We now divide the interval

into a number of nonoverlapping intervals
, where and

are the lower and upper values of interval
and , , , and .
Let denote the midpoint of interval. We now define a new
discrete-state process with state . We will use state

to represent any state of the continuous-state
process such that . Clearly, the larger the
number of intervals, the better the approximation.

Before we proceed, we make one further refinement to the
new discrete-state process . We note that the GLPT algo-
rithm in [1] is an approximation algorithm for the load balancing
problem, and it guarantees that the DLB of the WLA obtained
using the algorithm will never be more than 50% away from
the degree of load balancing of the optimal WLA. The impor-
tance of this result is as follows. Consider a network in which
the traffic matrix changes in such a way that the current WLA
provides a DLB for the new traffic matrix such that .
Based on the guarantee provided by algorithm GLPT, we can
safely assume that the load is well balanced and avoid a recon-
figuration. This is because the network will incur a cost for re-
configuring, without any assurance that the new DLB will be
less than . Therefore, we choose to let , and there-
fore the midpoint for the first interval is . We will
call any state a balancedstate since the offered load is
balanced within the guarantees of the GLPT algorithm.

We now specify decision alternatives, as well as reward
and cost functions, associated with each transition in the new
process . Consider a network in state . At the instant

3The value� = 0 is achieved when the load is perfectly balanced across the
C channels, in which case the expression on the right-hand side of (1) becomes
equal to t =C. The value� = C � 1 corresponds to the worst
case scenario where one channel carries all the traffic; in this case, the right-hand
side of (1) becomes equal to t .

Fig. 3. Transitions and rewards out of state(� ;D) of processM under
the two decision alternatives (Note: the labels along the transitions represent
rewards,not transition probabilities).

the traffic matrix changes, the network has two options. It
may maintain the current WLA, in which case it will make
a transition into state , where is the DLB of the
current WLA with respect to the new traffic matrix and
is the new distance. Or, it will reconfigure into a new WLA.
In the latter case, the network will move into state ,
since its new DLB is guaranteed to be less than 0.5. When
the network makes a transition into state , it
acquires an immediate expected reward, which is equal to

. In addition, if is a balanced state (i.e., if ),
a reconfiguration cost equal to is incurred.

The transitions out of state and the corresponding
rewards are illustrated in Fig. 3. If the decision of the policy is
not to reconfigure, then the process will take one of the transi-
tions indicated by the solid arrows in Fig. 3. Since the network
does not incur any reconfiguration cost, the immediate reward
acquired is a function of the new DLB in the new state. If, on
the other hand, the decision is to reconfigure, the transition out
of state will always take the network to a balanced state
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with a DLB equal to . These transitions are shown in dotted
lines in Fig. 3. A reconfiguration cost is incurred in this case,
making the immediate reward equal to .

The new process is a discrete-space discrete-time Markov
process with rewards and two alternatives per state, and we can
use the policy-iteration algorithm [3] to obtain an optimal policy
off-line and cache its decisions. The optimal policy decisions
can then be applied to a real network environment in the fol-
lowing way (refer also to Fig. 2). Consider a network with traffic
matrix operating under WLA . Let be the new traffic
matrix and be the WLA constructed by algorithm GLPT [1],
with and as inputs. Let also be the number
of receivers that need to be retuned to obtain WLAfrom
WLA . To determine whether the network should reconfigure
to the new WLA , let be the current DLB for the
network, and suppose that falls within the th interval,

. By definition of the Markov process , the cur-
rent network state is modeled by state of this process. If,
under the optimal policy, the decision associated with this state
is to reconfigure, then the network must make a transition to the
new WLA ; otherwise, the network will continue operating
under the current WLA .

We note that the discrete-space Markov process is an
approximation of the continuous-space process , since, as
discussed above, in general the DLBis a real number between
zero and 1. We also note that as the number of intervals

, the discrete-state process approaches the continuous-state
one. Therefore, we expect that as the number of intervals
increases, the accuracy of the approximation will also increase,
and the decisions of the optimal policy obtained through the
process will “converge.” This issue will be discussed in
more detail in Section V, where numerical results to be presented
will show that the decisions of the optimal policy “converge” for
relatively small values of . This is an important observation
since the size of the state space of Markov processincreases
exponentially with . By using a relatively small value for ,
we can keep the state space of the process to a reasonable size,
making it possible to apply the policy-iteration algorithm [3].

IV. THE TRANSITION PHASE AND RETUNING STRATEGIES

In this section, we assume that a decision to reconfigure the
network has been made according to the optimal policy de-
scribed in the previous section, and that the new WLAhas
been obtained through the GLPT algorithm [1]. We are, there-
fore, concerned with thetransition phase,during which the ac-
tual retuning of receivers that takes the network from the cur-
rent WLA to the new WLA takes place. Clearly, in order
to complete the reconfiguration, a number of receivers equal
to must be retuned. Aretuning strategydetermines
when, and in what sequence, these receivers are taken off-line
for retuning.

While the receiver of, say, nodeis being retuned to a new
wavelength, it cannot receive data, and thus, any packets sent
to node are lost. If, on the other hand, the network nodes are
aware that node is in the process of retuning its receiver, they
can refrain from transmitting packets to it. In this case, packets
destined to node will experience longer delays while waiting

for the node to become ready for receiving again. Moreover,
packets for arriving to the various transmitters during this time
cannot be serviced and may cause buffer overflows. This in-
crease in delay and/or packet loss during the transition phase
is the penalty incurred for reconfiguring the network. Once all
receivers have been retuned to their new wavelengths, the net-
work has completed its reconfiguration and normal operation
will resume until a new reconfiguration is required.

There is a wide range of strategies for retuning the receivers,
mainly differing in the tradeoff between the length of the tran-
sition period and the portion of the network that becomes un-
available during this period (see [6] for a discussion of similar
issues in multihop networks). One extreme approach would be
to simultaneously retune all the receivers that are assigned new
channels under . The duration of the transition phase is min-
imized under this approach (it becomes equal to the receiver
tuning latency), but a significant fraction of the network may
be unusable during this time. At the other extreme, a strategy
that retunes one receiver at a time minimizes the portion of the
network unavailable at any given instant during the transition
phase, but it maximizes the length of this phase (which now be-
comes equal to the receiver tuning latency times the distance

). Between these two ends of the spectrum lie a range
of strategies in which groups of two or more receivers are re-
tuned simultaneously.

Let be the set of receivers that need to be
switched to new wavelengths in order to reconfigure the network
to WLA . In the most general sense, a retuning strategy is
defined as a partition of into , subsets
of receivers , such that time is associated with subset .
Under this definition, a subset represents a group of receivers
that are simultaneously taken off-line for retuning. The retuning
of group starts at time and lasts for a period of time equal
to the receiver retuning latency, after which the receivers in the
group become operational again. Without loss of generality, we
assume that .

We distinguish betweenoverlapping and nonoverlapping
strategies. In the former, the retuning periods of two distinct
groups of receivers are allowed to overlap, while in the latter
a group does not start retuning until after group has
completed its retuning. Since it does not appear that overlap-
ping strategies offer any advantages over nonoverlapping ones
(in fact, they may complicate the management of the transition
phase), we only consider nonoverlapping strategies here.
However, the number of partitions of the setcan potentially
be very large, making it impractical to study all possible
nonoverlapping strategies. Hence, we restrict ourselves to the
class of parameterized nonoverlapping strategies described in
Fig. 4. Specifically, a family of strategies is characterized by a
specific value for parameter, which represents the maximum
number of receivers in each group . When a group of
receivers has completed its retuning, another group ofre-
ceivers is immediately scheduled for retuning (unless there are
less than receivers left to be retuned); this process is repeated
until all receivers in have switched to their new wavelengths
under WLA . We note that a wide range of strategies can
be obtained for the different values of .
Furthermore, by varying the value of parameter, we hope to
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Fig. 4. A class of parameterized retuning strategies.

Fig. 5. Steps of a nonoverlapping retuning strategy withL = 2 for a network withN = 10,C = 3.

determine whether there exists a tradeoff between the number
of receivers that can be scheduled to retune at the same time
and the associated packet losses during the transition phase.

The steps taken by such a strategy during the transition
phase are illustrated in Fig. 5. It is assumed that a network
with nodes and channels is to be reconfigured
from an initial to a final WLA (as shown in the figure) and
that . In this case, five receivers need to be retuned, and

. In the first step, receivers 3 and 4 are taken
off-line for retuning. When retuning is complete, receivers 3
and 4 become operational again, and receivers 5 and 7 are
selected for retuning. Finally, receiver 9 is retuned, at which
time the transition to the new WLA is complete. Thus, in this
example, the transition phase takes time equal to three times
the receiver retuning latency. Note that whenever ,
i.e., for any strategy that does not permit all receivers into
retune simultaneously, the network’s WLA undergoes a series
of transformations that begins with the initial WLA and ends
with the new balanced WLA . The WLAs between the initial
and final ones (calledintermediateWLAs in Fig. 5) do not
contain all the receivers in the network, just those that are not
retuning in the current step. By using small, incremental steps

during the transition phase, rather than shutting down a large
part of the network to simultaneously retune all the receivers
in , we hope to minimize the negative effects on network
performance while at the same time keeping the length of the
transition phase relatively small.

V. NUMERICAL RESULTS

We now study the reconfiguration policies and retuning
strategies introduced in previous sections using both analytical
and simulation techniques.

A. Optimal Reconfiguration Policies

In this section, we demonstrate the properties of the optimal
policies obtained by applying the policy-iteration algorithm
[3] to the Markov decision process developed in the previous
section. We also show how the optimal policy is affected by
the choice of reward and cost functions, and we compare the
long-term reward acquired by the network when the optimal
policy is employed to the reward acquired by other policies.
All the results presented in this section are for the approximate
Markov process with state space .
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Fig. 6. Near-neighbor model.

In this study, we consider anear-neighbortraffic model. In
other words, we make the assumption that if the network cur-
rently operates with a DLB equal to and no reconfiguration
occurs, the next transition is more likely to take the network to
a state with the same DLB or its two nearest neighbors
and than to a DLB further away from . Specifically, we
assume (4), shown at the bottom of the page. This traffic model
is illustrated in Fig. 6, which plots the conditional probability

that the next DLB will be , given that the current
DLB is , for intervals. The near-neighbor model
captures the behavior of networks in which the traffic matrix

changes slowly over time and abrupt changes in the traffic pat-
tern have a low probability of occurring. As a result, a network
that is perfectly balanced will not immediately become highly
unbalanced, and vice versa. We consider a different client-server
model of communication in the next section (refer to Fig. 21) to
illustrate that our approach can be used under a wide range of
traffic patterns.

Given the probabilities in (4), we let the conditional transition
probability,when no reconfiguration occurs,from state
to state be equal to

(5)

where is the probability that retunings will be required
in the next reconfiguration. The probabilities were measured
experimentally, by running a large number of simulations using
the near-neighbor model and recording the number of retunings
needed at each reconfiguration instant. We also observed that the
probability that random variable takes on a particular value
is independent of the DLB ; thus (5).

We note that we need to obtain two different transition prob-
abilities out of each state [3], one for each of the two possible

options: the do-not-reconfigure option and the reconfigure op-
tion. The above discussion explains how to obtain the transition
probability matrix for the do-not-reconfigure option. The tran-
sition probability matrix for the reconfigure option is easy to
determine since we know that regardless of the valueof the
current state, the next state will always be a balanced state, i.e.,
its DLB will be . The individual transition probabilities from
a state to a state are then obtained by making
the same assumption that the distribution ofis independent
of the DLB . Therefore, the transition probabilities under the
reconfigure option are

otherwise.
(6)

1) Convergence of the Optimal Policy:Let us first consider
the following reward and cost functions:

(7)

where and are weights assigned to the rewards and costs.
These reward and cost functions can reflect performance mea-
sures such as throughput, delay, packet loss, or the control re-
sources involved in receiver retuning. For example, a reward
function of the form may, depending on the value
of parameter , capture either the throughput or average packet
delay experienced while the network operates with a DLB equal
to . On the other hand, using a cost that is proportional to the
number of retunings (i.e., )
can account for the control requirements for retuning the re-
ceivers, or for the data loss incurred during reconfiguration. Fur-
thermore, parameter can be chosen based on which of the
retuning strategies discussed in Section IV is employed. Thus,
network designers can select in a unified fashion appropriate
rewards and costs to achieve the desired balance among the var-
ious performance criteria of interest.

We apply Howard’s algorithm [3] to a network with
nodes and wavelengths with a near-neighbor traffic
model similar to the one shown in Fig. 6. Our objective is to
study the effect that the number of intervals in the range
[0, 1] of possible values of DLB has on the decisions of
the optimal policy. As we mentioned in Section III-B, we expect
the decisions of the optimal policy to “converge” as .
More formally, let be a real number such that ,
and let be the interval in which falls when the total number
of intervals is . Also let be the decision of the
optimal policy for state of Markov process when

or

or

(4)
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Fig. 7. Optimal policy decisions forN = 20, C = 5,K = 20,A = 30, andB = 1.

Fig. 8. Optimal policy decisions forN = 20,C = 5,K = 30,A = 30, andB = 1.

the number of intervals is . We will say that the decisions of
the optimal policy converge if

(8)

In Figs. 7–9, we plot the decisions of the optimal policy for
the 20-node five-wavelength network with a near-neighbor
traffic model and for three different values of; the weights
used in the functions (7) were set to and . Fig. 7
corresponds to the optimal policy for intervals, while

in Figs. 8 and 9, we increase to 30 and 40, respectively. The
histograms shown in Figs. 7–9, as well as in other figures in
this section, should be interpreted as follows. In each figure, the

-axis represents the DLB (with a number of intervals equal
to the corresponding value of ), while the -axis represents
the possible values of . The vertical bar at a particular DLB
value has a height equal to such that

reconfigure
do not reconfigure

(9)
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Fig. 9. Optimal policy decisions forN = 20, C = 5,K = 40,A = 30,B = 1.

In other words, for each value of , there exists aretuning
thresholdvalue such that the decision is to reconfigure
when the number of receivers to be retuned is less than,
and not to reconfigure if it is greater than . Since the op-
timal policy had similar behavior for all the different reward and
cost functions we considered, its decisions will be plotted as a
histogram similar to those in Figs. 7–9.4

As we can see in Figs. 7–9, the decisions of the optimal policy
do converge [in the sense of (8)] as increases. For instance,
let us consider a DLB of one, which falls in the fourth interval
when (in Fig. 7), the sixth interval when (in
Fig. 8), and the seventh interval when (in Fig. 9). In
all three cases, the retuning threshold is equal to nine for these
intervals; therefore, the decisions of the optimal policy for the
three values of are the same. On the other hand, for a DLB
of two, the retuning threshold is 14 in Fig. 7 it drops to 13 in
Fig. 8, the same as in Fig. 9. In other words, for a DLB of two,
the decisions of the optimal policy are different when
than when or (in the former case, the decision is
to reconfigure as long as the number of retunings is at most 14,
while in the latter the decision is to reconfigure only when the
number of retunings is at most 13). But the important observa-
tion is that the policy decisions do not change when the number

of intervals increases from 30 to 40, indicating convergence.
In fact, there are no changes in the optimal policy for values of

greater than 40 (not shown here). We have observed similar
behavior for a wide range of values for weightsand , for

4That the optimal policy was found to be a threshold policy (with a possibly
different retuning threshold) for each value of� can be explained by the fact
that we only consider cost functions that are nondecreasing functions of random
variableD. As a result, if the decision of the optimal policy for a state(� ;D )
is not to reconfigure, intuitively one expects the decision for state(� ;D ),
whereD > D , to also be not to reconfigure, since the reconfiguration cost
�(D ) for the latter state would be at least as large as the reconfiguration cost
�(D ) for the former

different network sizes, and for other reward and cost functions.
These results indicate that a relatively small number of intervals
is sufficient for obtaining an optimal policy.

Another important observation from Figs. 7–9 is that the re-
tuning threshold increases with the DLB values. This behavior
can be explained by noting that because of the near-neighbor
distribution (refer to Fig. 6), when the network operates at states
with high DLB values, it will tend to remain at states with high
DLB values. Since the reward is inversely proportional to the
DLB value, the network incurs small rewards by making transi-
tions between such states. Therefore, the optimal policy is such
that the network decides to reconfigure even when there is a
large number of receivers to be retuned. By doing so, the net-
work pays a high cost, which, however, is offset by the fact that
the network makes a transition to the balanced state with a low
DLB, reaping a high reward. On the other hand, when the net-
work is at states with low DLB, it also tends to remain at such
states where it obtains high rewards. Therefore, the network is
less inclined to incur a high reconfiguration cost, and the re-
tuning threshold for these states is lower.

2) The Effect of Reward and Cost Functions:In
Figs. 10–12, we apply Howard’s algorithm to a network
with nodes and wavelengths, operating
under a near-neighbor model similar to the one shown in
Fig. 6. For this network we used intervals, and we
varied weights and in the reward and cost functions in (7)
to study their effect on the optimal policy. Specifically, we let

, and we varied from 20 (in Fig. 10) to 35 (in Fig. 11)
to 50 (in Fig. 12). We first observe that the optimal policy
is again a threshold policy for each value of the DLB.
However, as increases, we see that the retuning threshold
associated with each DLB value also increases. This behavior
of the optimal policy is in agreement with intuition since, by
increasing , we increase the reward obtained by taking the
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Fig. 10. Optimal policy decisions forN = 100,C = 10,K = 20,A = 20, andB = 1.

Fig. 11. Optimal policy decisions forN = 100,C = 10,K = 20,A = 35, andB = 1.

network to a balanced state relative to the cost of reconfigu-
ration, making reconfigurations more attractive. Similarly, if
we keep constant and increase (a case not shown here),
reconfiguring the network becomes less desirable, and thus the
retuning threshold associated with each DLB value decreases.
Overall, in our study, we have found that one can obtain a
wide variety of policies by varying the values of weights
and . It is up to the network operator to decide what values
to use, and thus to make the network more or less sensitive to
traffic changes (i.e., more or less likely to reconfigure).

We now proceed to study the effect of different reward and
cost functions. One performance measure of interest is the
probability of unnecessary reconfigurations. By making
and large, and letting be a slowly decreasing func-
tion as increases, minimizing the probability of unnecessary
reconfigurations becomes equivalent to maximizing (3). Simi-
larly, the objective to minimize the probability that the portion
of the network that becomes unavailable due to reconfiguration
is greater than a certain threshold can be achieved by
letting be small, letting be large, and selecting
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Fig. 12. Optimal policy decisions forN = 100,C = 10,K = 20,A = 50, andB = 1.

Fig. 13. Cost function�(D) used for the policy shown in Fig. 14.

to be a function as shown in Fig. 13 (where ). We
now consider the latter cost function plotted in Fig. 13,
while the reward function is as in (7) with . In Fig. 14,
we show the decisions of the optimal policy for a network
with , , and a near-neighbor traffic model
when . As we can see, the retuning threshold never
exceeds the value . Therefore, the network will
never reconfigure when the number of retunings is greater
than 30, as expected.

Another important performance objective is to minimize the
probability that the network will not be able to handle the of-
fered traffic load. This is equivalent to minimizing the proba-
bility that the DLB increases beyond a maximum value .
Let be the maximum traffic load (in packets per packet
transmission time) that will ever be allowed into the network.
By definition of the DLB in (1), the load offered to the domi-
nant channel when the DLB iswill be 1 . Since
each channel can clear at most one packet per packet time, we
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Fig. 14. Optimal policy decisions forN = 100, C = 10,K = 20, andA = 50.

Fig. 15. Reward function�(�) used for the policy shown in Fig. 16.

have that 1 . Therefore, this objective can
be achieved by selecting a function, as shown in Fig. 15
(where ) and letting be small. Thus, we also
obtained the optimal policy for the same network as above, but
with the reward function shown in Fig. 15; and a cost function

, with . The resulting policy is shown in
Fig. 16, where we can see that the retuning threshold is 100 for
DLB values greater than 4.5. Since the maximum number of re-
ceivers that will ever need to be retuned is [1],

a retuning threshold equal to 100 means that the network will
always reconfigure when the DLB becomes greater than 4.5.
Thus, although the network is not prohibited from entering a
state with a DLB value greater than 4.5, once doing so, in the
very next transition the network will reconfigure and will enter
the balanced state. Subsequently, because of the nature of the
near-neighbor traffic model, the network will tend to stay at
states with low DLB values. In effect, therefore, the probability
that the network will be operating at states with DLB values
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Fig. 16. Optimal policy decisions forN = 100,C = 10,K = 20, andB = 1.

greater than 4.5 is very small when the reward function in Fig. 15
is used.

3) Comparison to Threshold Policies:In this section, we
compare the optimal policy against three classes of threshold-
based policies.

1) DLB-threshold policies.There exists a threshold DLB
value such that if the system is about to make a tran-
sition into a state , then the network
will reconfigure and make a transition to a state with DLB

, regardless of the reconfiguration cost involved. Oth-
erwise, no reconfiguration occurs. This class of policies
is not concerned with the reconfiguration cost incurred.
Instead, it ensures that the traffic-carrying capacity of the
network will never fall below the value

.
2) Retuning-threshold policies.This class of policies is in a

sense a “dual” of the previous one, in that decisions are
based solely on the number of retunings involved in the
reconfiguration, not on the DLB. Specifically, if the net-
work is about to make a transition, then the network will
reconfigure only if the number of receivers that must
be retuned is less than or equal to a threshold . If

, no reconfiguration takes place. This class of
policies ensures that the portion of the network that be-
comes unavailable due to reconfiguration never exceeds

.
3) Two-threshold policies.This class of policies attempts

to combine the objectives of the two classes of policies
above. Specifically, there are two thresholds and

. If the system is about to make a transition into a
state , then the network will reconfigure if

. Otherwise, if , the network will recon-
figure if the number of receivers that must be retuned

is less than or equal to , and it will not reconfigure if
. We note that if we let (i.e.,

the maximum number of receiver that will ever need to
be retuned [1]), these policies reduce to the class of DLB-
threshold policies. Similarly, if we let (i.e.,
the DLB threshold is equal to the maximum DLB value),
these policies become simple retuning threshold policies.
Therefore, the two-threshold policies are the most gen-
eral class of policies and include the DLB-threshold and
retuning-threshold policies as special cases.

The DLB-threshold and the general two-threshold policies
above define Markov processes that areoutsidethe class of Mar-
kovian decision processes considered in Section III. In a Mar-
kovian decision process, there are several alternatives per state.
But once an alternative has been selected for a state, then tran-
sitions from this state are always governed by the chosen alter-
native (refer also to Fig. 3). In a DLB-threshold policy, on the
other hand, the alternative selected does not depend on thecur-
rentstate, but rather on thenextstate. Therefore, the system may
select different alternatives when at a particular state, depending
on what the next state is,5 and similarly for the two-threshold
policies. Since Howard’s algorithm [3] is optimal only within
the class of Markovian decision processes, it is possible that
these threshold policies obtain rewards higher than the optimal
policy determined by the algorithm. Retuning-threshold poli-
cies, however, are such that there is a unique alternative per state,
so we expect them to perform no better than the optimal policy.6

5If the next state is one with a DLB less than the threshold, the alternative
selected is not to reconfigure; otherwise the alternative selected is to reconfigure.

6As we have seen, the optimal policies are in fact threshold policies with a
different retuning threshold for each DLB value. Therefore, the optimal policy
will in general perform better than a retuning policy with the same threshold for
all DLB values.
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Fig. 17. Policy comparison,N = 100,C = 10,K = 20,A = 50, andB = 1.

All the results presented in this section are for a network
with nodes, wavelengths, a near-neighbor
traffic model, and intervals. The reward and cost func-
tions considered are those in (7). In Fig. 17, we compare the
optimal policy obtained by Howard’s algorithm [3] to a number
of retuning-threshold policies. The figure plots the average
long-term reward acquired by each of the policies against the
retuning threshold . The horizontal line corresponds to
the reward of the optimal policy, which, clearly, is independent
of the retuning threshold. Each point of the second line in
the figure corresponds to the reward of a retuning-threshold
policy with the stated threshold value. As we can see, re-
tuning-threshold policies obtain a reward that is significantly
less than that of the optimal policy, as expected. Furthermore,
the reward of retuning-threshold policies varies depending on
the actual threshold used. Since the best threshold depends on
system parameters such as the traffic patterns and the reward
and cost functions and the associated weights, it is impossible
to know the best threshold to use unless one experiments with
a large number of threshold values.

In Fig. 18, we compare the optimal policy to a DLB-threshold
policy and a number of two-threshold policies. For these results,
we used and as the values for the weights in the
reward and cost functions, respectively, in (7). This time, we
plot the reward of each policy against the DLB threshold value;
similar to Fig. 17, the optimal policy is independent of the DLB
threshold, resulting in a horizontal line in Fig. 18. We also plot
the reward of DLB-threshold policies with varying DLB thresh-
olds and of a family of two-threshold policies. Each of the three

plots of two-threshold policies corresponds to a different re-
tuning threshold (namely, , , and ) and varying
DLB thresholds. Also, recall that the DLB-threshold policy is
equivalent to a two-threshold policy with a retuning threshold
equal to .

The most interesting observation from Fig. 18 is that, for
certain values of the DLB-threshold, the DLB-threshold policy
and the two-threshold policy with retuning threshold

achieve a higher reward than the optimal policy obtained
through Howard’s algorithm. This result is possible because, as
we discussed earlier, the class of two-threshold policies is more
general than the class of policies for which Howard’s algorithm
is optimal. On the other hand, we note that the reward of the
DLB-threshold policy depends strongly on the DLB threshold
used and that the reward of the two-threshold policies depends
on the values of both thresholds. Although within a certain range
of these values the threshold policies perform better than the op-
timal policy, the latter outperforms the former for most threshold
values. Therefore, threshold selection is of crucial importance
for the threshold policies, but searching through the threshold
space can be expensive. The optimal policy, however, guaran-
tees a high overall reward and is also simpler to implement since
the network does not need tolook aheadto the next state to de-
cide whether or not to reconfigure.

Fig. 19 is similar to Fig. 18 in that we again compare the
optimal policy against a DLB-threshold and two-threshold
policies. For these experiments, however, we have used
and in the reward and cost functions, respectively, of (7).
As we can see, the reward of the optimal policy is strictly higher
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Fig. 18. Policy comparison,N = 100,C = 10,K = 20,A = 50, andB = 1.

than that of threshold policies across all possible threshold
values. These results demonstrate that DLB- or two-threshold
policies do not always perform better than the optimal policy,
and their performance depends on the system parameters and/or
the reward and cost functions. Furthermore, it is not possible
to know ahead of time under what circumstances the threshold
policies will achieve a high reward. Equally important, if the
network’s operating parameters change, threshold selection
must be performed anew, since, for instance, the DLB threshold
that maximizes the reward of the DLB-threshold policy in
Fig. 18 results in very poor performance in Fig. 19, and vice
versa.

Overall, the results presented in this section demonstrate that
the optimal policy obtained through Howard’s algorithm can
successfully balance the two conflicting objectives, namely, the
DLB and the number of retunings, and always achieves a high
reward across the whole range of the network’s operating pa-
rameters. We have also shown that by appropriately selecting
the reward and cost functions, the optimal policy can be tai-
lored to specific requirements set by the network designer. On
the other hand, pure threshold policies, although they can some-
times achieve high reward, are less flexible, and they intro-
duce an additional degree of complexity, namely, the problem
of threshold selection.

B. Simulation Study

The objective of our simulation study is twofold. First, we
want to demonstrate the benefits of dynamic reconfiguration in

terms of specific performance measures such as packet delay
and packet loss. Second, we want to evaluate the various re-
tuning strategies of Section IV by studying the effect of param-
eter in the algorithm shown in Fig. 4. To this end, we have
developed a simulator of a WDM network that implements the
reconfiguration policies and retuning strategies described ear-
lier. In the following, we present the most important features of
our simulator; for a detailed description, the reader is referred
to [2].

Each channel in the network is modeled as an OC-48 (2.48
Gb/s) link. The traffic between nodes in the network follows
a client-server model of communication. Each node is either
a server or a client, but the number of servers is considerably
smaller than the number of clients. Each client has two types of
traffic sources. The first source creates the background traffic
in the network by generating packets to other client nodes; the
arrival rate of this traffic is relatively low. The second source
models the communication of this client with its current server,
and its arrival rate is significantly higher than that of the back-
ground source. A source, regardless of its type, is implemented
following the bursty source model recommended by the ATM
Forum for simulating VBR-rt traffic. The packet size in the net-
work was taken to be equal to the length of an ATM cell. The
nodes access the various channels using the HiPeR-MAC pro-
tocol [11], which in turn uses the algorithms in [10] to schedule
packets for transmission.

We created variations in the traffic pattern by using the fol-
lowing technique. Initially, each client node is associated with
one particular server. Periodically, the assignment of clients to
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Fig. 19. Policy comparison,N = 100,C = 10,K = 20,A = 20, andB = 1.

servers is modified to reflect changes in the needs of the applica-
tions running at the client (for instance, a client may access a file
server to edit a file and then a Web server to fetch a Web page).
This change in client-server assignments creates a shift in the
traffic pattern and may result in an unbalanced network where
one or more channels carry a large fraction of the overall traffic.
Network nodes accumulate traffic data for each source–destina-
tion pair over 2 ms intervals, using the in-band control packets
of HiPeR- [11]. These data are used to compute the current
DLB of the network and to determine whether reconfiguration
is needed. As a result, successive reconfigurations are always
spaced at least 2 ms apart. However, no necessary reconfigura-
tions were ever delayed, since in our model each client-server
assignment lasts for at least 20 ms.7

We collected experimental traffic data for the client-server
communication model, from which we built a conditional dis-
tribution of DLB values for intervals. This conditional
distribution is plotted in Fig. 20. As we can see,
this distribution is quite different from the near-neighbor dis-
tribution of Fig. 6. Using the reward and cost functions in (7),
the optimal policy obtained by Howard’s algorithm is shown in
Fig. 21. This optimal policy was used throughout this section.

For the purposes of this study, we consider a WDM network
with nodes, of which seven are servers and 63 are

7While a change in the client-server assignment is likely to create a com-
pletely new traffic pattern and lead to reconfiguration, the behavior of individual
sources within a given assignment also causes (smaller) changes in the overall
traffic. The accumulation of a large number of these changes may create the
need for a reconfiguration within a given client-server assignment.

Fig. 20. Conditional distribution of DLB values in the client-server model.

clients. There are channels in the network with an ag-
gregate capacity of 12.4 Gb/s. The fast tunable transmitters are
assumed to take two packet times (342 ns for 53-byte packets
and OC-48 speeds) to switch wavelengths. Each simulation run
terminates when a total of 10packets are successfully received
by their respective destinations. In the following, we describe
two sets of experiments. First, we compare the average packet
delay and packet loss in networks with and without dynamic re-
configuration. Second, we compare various retuning strategies
in order to determine the effect of several important parameters
on network performance.
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Fig. 21. Optimal reconfiguration policy calculated for the client-server traffic pattern.

Fig. 22. Average packet delay in networks with and without reconfiguration capabilities.

1) Benefits of Dynamic Network Reconfiguration:We
study the performance of the network with and without recon-
figuration capabilities. When no reconfiguration is allowed, the
assignment of receivers to wavelengths (WLA) remains fixed
throughout the simulation (a static network). In a dynamic

network, reconfigurations are governed by one of two policies:
the optimal MDP policy depicted in Fig. 21 or a DLB-threshold
policy (see Section V-A3) with a DLB threshold equal to 0.8.
For either policy, the retuning strategy in Fig. 4 with
is used, i.e., all receivers needing retuning are simultaneously
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Fig. 23. Packet loss in networks with and without reconfiguration capabilities.

retuned in one step. The receiver tuning latency is assumed to
be equal to 1000 packet times (i.e., three orders of magnitude
greater than the transmitter latency), while the buffer capacity
at each network node is fixed at 200 packets per channel.

In Fig. 22, we plot the average packet delay for each net-
work as a function of total network throughput. As we can see,
the networks with a dynamic reconfiguration capability clearly
outperform the one without such capability. As the load ap-
proaches and exceeds 50% of the total channel capacity (equal
to 12.4 Gb/s), the delay in the static network increases very
rapidly to nearly 800 s. On the other hand, the average packet
delay in the dynamically reconfigurable networks grows much
slower and remains under 100s for the loads shown. Also,
the network using the optimal reconfiguration policy achieves
lower average packet delays than those of the network using the
DLB-threshold policy. These results can be explained by the sta-
bility condition derived in [11], which states that the maximum
sustained traffic load is inversely proportional to the average
DLB of the network. By periodically rebalancing the traffic load
across the channels, reconfigurable networks maintain a signif-
icantly lower average DLB than static networks, allowing them
to accommodate higher traffic loads. Furthermore, the optimal
policy achieves a lower average DLB than the DLB-threshold
policy, resulting in lower delays.

In Fig. 23, we plot the percentage of packets lost in the three
networks. As we can see, at low loads, the static network in-
curs no losses, while the reconfigurable networks do experience
some packet loss. This loss is not due to buffer overflows; in-
stead, it takes place during the transition phase due to recon-

figuration. Recall that when a receiver is to be retuned, packets
currently buffered for it at the various nodes are discarded since
they are buffered for transmission on the wrong (old) wave-
length. Thus, this loss represents the penalty incurred for having
a network that is traffic-adaptive. However, at higher loads, the
static network experiences quite high losses due to buffer over-
flows. Since the WLA is fixed in a static network, when the
traffic patterns change such that one channel carries a large part
of the overall traffic, buffers for this channel quickly fill up in
all network nodes. Reconfigurable networks, however, period-
ically rebalance the traffic load, preventing unnecessary buffer
overflows. As a result, at higher loads, packet losses are signif-
icantly lower than in the static network. Again, packet loss is
lowest when the optimal policy is used; at the highest load in
Fig. 23, the packet loss with the optimal policy is one order of
magnitude lower than the loss in the static network.

Fig. 24, which shows the maximum buffer occupancy for
the various traffic loads, provides further support to these
conclusions. At low loads, buffer occupancy levels for the
static network are low, but at high loads maximum buffer
occupancy equals the buffer capacity, indicating packet loss
due to overflows. On the other hand, buffer occupancy for the
reconfigurable networks is low at low loads, confirming that
the losses shown in Fig. 23 are indeed due to reconfiguration.
Furthermore, the maximum buffer occupancy when the optimal
policy is used is quite low and never equals the buffer capacity
for the range of loads shown. This fact explains the low delays
in Fig. 22 and indicates that this network never loses any
packets due to buffer overflows and can accommodate even
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Fig. 24. Maximum buffer occupancy in networks with and without reconfiguration capabilities.

higher loads. When the DLB-threshold policy is used, the
maximum buffer occupancy is higher overall and equals the
capacity for the highest load shown.

We conclude that under moderate-to-high traffic loads, the
performance of a WDM network, in terms of both average
packet delay and packet loss, would significantly benefit from
having a dynamic reconfiguration capability. Furthermore, this
improvement in performance is achieved with a decrease in the
amount of buffer space required. These results clearly demon-
strate that by adapting itself to prevailing traffic conditions,
the novel RTT-STR architecture introduced in this paper can
provide a cost-effective solution to building high-performance
WDM networks. They also illustrate the importance of em-
ploying an optimal reconfiguration policy, since the network
using the optimal policy clearly outperforms the one with the
DLB-threshold policy.

2) Comparison of Retuning Strategies:We now compare
the various retuning strategies in the class shown in Fig. 4
in terms of the same performance metrics considered in the
previous section, namely, average packet delay, packet loss, and
maximum buffer occupancy. In our study, we only consider a
reconfigurable network employing the optimal policy of Fig. 21
and operating under an offered load of 7 Gb/s (the maximum
load shown in Figs. 22–24). We have obtained results for three
values of the receiver tuning latency, corresponding to 1000,
2000, and 5000 packet transmission times, in order to study the
effect of this important parameter on the performance of the
various retuning strategies. For the experiments presented in

this section, the buffer capacity at each node was set to such a
high value that there were never any buffer overflows. There-
fore, all the losses shown were entirely due to the transition
phase during reconfiguration.

In Figs. 25–27, we plot the average packet delay, packet loss,
and maximum buffer occupancy, respectively, as a function of
parameter (recall that in Fig. 4, corresponds to the max-
imum number of receivers that can be simultaneously retuned in
one step of the transition phase). As we can see, as the receiver
tuning latency increases, all three performance measures are
negatively affected. This behavior can be explained by noting
that the longer it takes each receiver to retune, the longer a
group of receivers will be off-line during the transition phase
and the longer it will take to reconfigure the network for a given
value of . While a receiver is not operational, newly arriving
packets destined for it have to be buffered. Thus, for higher re-
tuning latency values, the maximum buffer occupancy increases
(Fig. 27) leading to higher losses (Fig. 26) as well as higher de-
lays (Fig. 25). We also note, however, that within the range of
values for for which the best performance is observed over
all three measures (i.e., ), the curves corresponding
to a tuning latency of 2000 are very close to those for a latency
of 1000, and even the curves for a latency of 5000 are not sig-
nificantly different. Furthermore, the average packet delay, the
packet loss, and the maximum buffer occupancy for a latency of
5000 and are lower than the corresponding values for a
DLB-threshold policy in Figs. 22–24. This result indicates that
if an appropriate value for is used, then even very slow (and,
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Fig. 25. Average packet delay comparison of retuning strategies.

consequently, inexpensive) tunable devices can be adequate for
reaping the benefits of reconfiguration.

Finally, from the three figures, we observe that the two ex-
treme strategies obtained for large values of(i.e., simultane-
ously tuning all required receivers at once) and (i.e.,
tuning one receiver at a time) do not perform as well as other
strategies obtained for values ofbetween one and . We can
explain this result by considering each of the two extreme strate-
gies separately. When all of the receivers are allowed to retune
at the same time, the network takes the shortest possible time
to reconfigure to an optimal WLA; however, during this time a
large number of receivers are not operational. As a result, even
though average packet delay is very low due to a short transi-
tion phase, packet losses are relatively high. When the network
is only allowed to retune the receivers one at a time, the transi-
tion phase is the longest among all strategies. Consequently, the
network operates under a suboptimal WLA for a long time, and
performance suffers in terms of both packet delay and loss. The
results in the figures indicate that strategies with medium values
for (specifically, ) achieve the best overall per-
formance.

VI. CONCLUDING REMARKS

We have conducted an in-depth study of the reconfiguration
problem in traffic-adaptive WDM networks. Our objective was
to investigate three open issues: how frequently to reconfigure
the network, how to structure the reconfiguration phase, and
how to quantify the benefits of reconfiguration to the network
in terms of measurable performance parameters.

In order to address the first issue, we developed a for-
mulation based on Markov decision process theory. Given
some information regarding the traffic patterns in the net-
work (which can be obtained empirically), the formulation
allows us to apply existing algorithms (specifically, Howard’s
policy-iteration algorithm) to obtain (off-line) optimal dy-
namic reconfiguration policies. These policies can then be
used during the operation of the network (on-line) to deter-
mine the instants at which reconfiguration must take place.
The policies can be fine-tuned to strike the desired balance
between two important but conflicting objectives: the degree
of load balancing (which, if considered in isolation, would be
optimized by reconfiguring any time there is a slight change
in the traffic pattern) and the degree of network unavailability
as captured by the number of transceiver retunings (which
would be optimized by never reconfiguring the network). Our
formulation provides two distinct tools for fine-tuning the
policies: the cost functions (which can be selected to reflect
specific performance measures) and the weights applied to
each objective.

For the second issue, we presented a class of parameter-
ized retuning strategies for carrying out the reconfiguration
phase. Under these strategies, the transceivers to be retuned are
grouped into sets, and the transceivers in each set are simultane-
ously taken off-line for retuning. Using simulation, we explored
the tradeoffs between the length of the reconfiguration phase
(which would be kept short if all transceivers were grouped in
a single set) and the portion of network resources that become
unavailable at any given time (which would be optimized if
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Fig. 26. Packet loss comparison of retuning strategies.

Fig. 27. Maximum buffer occupancy of retuning strategies.

each set consists of a single transceiver). While the relative
performance of the strategies is affected by the transceiver

tuning latency, our results demonstrate that neither of the two
extreme strategies is optimal. Our findings indicate that the
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strategies with the best overall performance are those that are
in the middle of the spectrum between the two extremes.

Finally, using simulation, we have quantified the benefits of
reconfiguration in terms of important performance measures
such as average packet delay and packet loss. Specifically, we
have observed that at moderate-to-high traffic loads, a network
that employs our optimal reconfiguration policies significantly
outperforms static networks (no reconfiguration) or networks
that apply simple threshold-based reconfiguration policies.

Overall, our work demonstrates that by employing slowly
tunable devices, it is possible to build traffic-adaptive high-per-
formance multiwavelength networks cost-effectively. While in
this paper we have not considered the effect of equipment fail-
ures or signal impairments, reconfiguration can also be invoked
as a tool to recover from anomalous conditions. The issue of de-
veloping reconfiguration policies for recovery from failures/im-
pairments is a topic of future research.
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