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The Scheduling and Wavelength Assignment Problem
in Optical WDM Networks

Evripidis Bampis and George N. Rouskas, Senior Member, IEEE

Abstract—We consider a scheduling problem, which we call
the scheduling and wavelength assignment(SWA) problem, arising
in optical networks that are based on the wavelength-division-
multiplexing (WDM) technology. We prove that the SWA problem
is -complete for both the preemptive and the nonpreemptive
cases. Furthermore, we propose two efficient approximation algo-
rithms. The first is for the preemptive case and is based on a natural
decomposition of the problem to the classical multiprocessor
scheduling and open-shop problems. For the nonpreemptive case,
we prove that a naive implementation of list scheduling produces a
schedule that can be times far from the optimum, where is the
number of processors (equivalently, WDM channels). Finally, we
give a more refined version of list scheduling and we prove it to be
a 2-approximation algorithm for both the off-line and the on-line
contexts.

Index Terms—Optical networks, packet scheduling, wavelength
assignment, wavelength division multiplexing.

I. INTRODUCTION

T HE spectacular growth in data traffic and the surging de-
mand for diverse services has led to a dramatic increase

in demand for data transmission capacity. Recent advances in
wavelength-division-multiplexing (WDM) technology [4], [10]
are expected to provide solutions to this challenge. WDM sup-
ports multiple simultaneous channels, each on a different wave-
length, on a single fiber. WDM systems operating at aggregate
rates exceeding one terabit per second have been demonstrated,
while systems supporting rates of tens of gigabits per second are
becoming commercially available.

As future networks based on WDM technology are developed
to support data traffic and the Internet, they must be designed
and optimized for that purpose. In particular, a number of new
and challenging problems arise in the area of scheduling data
packets over multiple wavelengths, both in a local area environ-
ment [1], [20] and in a backbone network consisting of IP routers
[18]. In this paper, we consider a scheduling problem with ap-
plications to packet-switched optical WDM networks, and we
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prove that it is -complete for both the preemptive and the
nonpreemptive cases. We then present two efficient approxima-
tion algorithms for this problem. For the preemptive case, the ap-
proximation algorithm is based on a natural decomposition of
the problem into the classical multiprocessor scheduling and
open-shop problems. For the nonpreemptive case, we develop
two list-scheduling algorithms, the second of which is a 2-ap-
proximation algorithm for both the on-line and off-line contexts.

The paper is organized as follows. In Section II, we define
the scheduling problem under study, and we motivate it by
describing its relationship to packet scheduling in WDM optical
networks. In Section III, we present an off-line approximation
algorithm for preemptive scheduling, and in Section IV, we
present both off-line and on-line algorithms for the nonpreemp-
tive case. We conclude the paper in Section V.

II. PROBLEM DEFINITION AND APPLICATIONS

A. The Scheduling and Wavelength Assignment (SWA) Problem

We consider a set of processors and a setof
jobs. Each job is defined as a set of operations,

, and denotes the processing time of
operation . The objective is to schedule thejobs on the
processors so as to minimize themakespan, or maximum finish
time of the schedule, subject to the following constraints.

C1) All operations of job are executed on the same pro-
cessor.

C2) The operations and cannot be simultaneously
executed, for all .

C3) A processor may execute at most one operation at any
time instant.

Constraints C1–C3 define a set ofcompatibilityconstraints
among the different operations. Specifically, two operations
and are said to beincompatibleif either or ;
otherwise, the operations arecompatible. Incompatible opera-
tions cannot be executed simultaneously. Constraint C1 also im-
plies that once an operation of job has been executed on a
processor , then all operations , must be exe-
cuted on the same processor. However, the processor on which
the operations of a job are executed is not known in advance;
rather, it is determined as part of the solution to the scheduling
problem. Furthermore, the operations of a jobcan be exe-
cuted on processor in any order.

The scheduling problem defined above can be logically de-
composed into two sub-problems. Because of constraint C1,
the first sub-problem is to assign each jobto a processor ,
meaning that all operations of will be executed on . Given
this assignment of jobs to processors, the second sub-problem
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is to schedule the operations on their assigned processors so as
to minimize the makespan, while also satisfying the compati-
bility constraints C2 and the processor constraint C3. This de-
composition leads to a natural way of solving the scheduling
problem by applying existing algorithms to each sub-problem
in isolation, as discussed later. However, we will also show that
it is possible to design algorithms to simultaneously solve both
sub-problems, and these algorithms are more efficient than the
two-step approach described above.

We will refer to this type of scheduling problem as thesched-
uling and wavelength assignment(SWA) problem, since it arises
naturally in packet-switched optical WDM networks, as we ex-
plain in Section II-C. We have also chosen to useand as sub-
scripts for the operations to reflect the fact that, in the network
settings described in Section II-C, operation corresponds
to the amount of traffic to be transmitted from a sourceto a
destination in the network.

We now introduce notation that will be useful in later sec-
tions. Let denote the sum of the processing times of all op-
erations, let be the maximum amount of processing time
required by any job, and let denote the maximum amount
of processing time associated with any source:

(1)

(2)

(3)

Let denote the optimal makespan. We obviously have that

(4)

(5)

(6)

B. Related Classical Scheduling Problems

There are two classical scheduling problems that are closely
related to the SWA problem that we consider in this work. The
first one is themultiprocessor scheduling problem[9], [14], in
which we have a set of tasks that must be scheduled on
machines in such a way that the makespan is minimized. As in
the SWA problem, the tasks can be executed on any machine
and their processing times are not machine dependent. It is well
known that the multiprocessor scheduling problem is-com-
plete [9], and that any list-scheduling algorithm is a 2-approx-
imation algorithm [13] (a list-scheduling algorithm considers
a set of tasks in a given order and assigns to a processor that
becomes idle the next unassigned task in the order). Note that
this result is very important, since it remains valid in anon-line
context. Of course, for theoff-line case, there exist -approx-
imation algorithms which provide significantly better perfor-
mance guarantees (an-approximation algorithm produces a
solution that is guaranteed to be at most a factoraway from the
optimal one). These include the largest processing time (LPT)

algorithm, which is a 4/3-approximation algorithm [13], and
the MULTI-FIT algorithm, which guarantees a relative perfor-
mance of 1.2 [8]. In addition, there exists a polynomial time
approximation scheme (PTAS) for the multiprocessor sched-
uling problem that is due to Hochbaum and Schmoys [15]. The
main difference between the multiprocessor scheduling problem
and the SWA problem is that in the former, thetasks are
assumed to be pair-wise independent, and thus, any two tasks
may be scheduled simultaneously on different processors. In the
SWA problem, on the other hand, there is a set of compatibility
constraints among the operations, as defined by constraints C1
and C2, which prevent the simultaneous execution of certain
operations.

The second related problem is theopen-shop problem, where
we have a set of jobs with operations each [14], [12],
[17], [11], such that theth operation, , of a job
must be processed on machine. Similar to the SWA problem,
under open-shop scheduling, the operations of a job may be
processed in any order, and only one operation of a given job
can be processed at any given time. The preemptive version
of the open-shop problem is solvable in polynomial time [12].
A polynomial-time algorithm also exists for the nonpreemp-
tive open-shop problem with processors [12]. However,
the general nonpreemptive open-shop problem is known to be

-complete, and it has been shown that any list-scheduling al-
gorithm is a 2-approximation algorithm [16]. Here also, it is in-
teresting to point out that this result holds in the on-line context.

C. Applications

We now describe several network environments where the
SWA problem arises.

Broadcast WDM optical networks[1]: Consider a WDM op-
tical network with nodes interconnected via a broadcast star
that supports distinct wavelengths [19]. Nodes com-
municate by exchanging fixed-length packets, and the time it
takes to transmit a packet is taken as the unit of time. Since
there are fewer wavelengths than nodes, packet transmissions by
several nodes may share a single wavelength, and the problem
of scheduling these packet transmissions arises. At the same
time, an important objective in such a network is load balancing
across the different wavelengths, since it has been shown that
network performance deteriorates significantly if the traffic load
concentrates on a few wavelengths [22], [21], [2], [3].

Let us assume that the long-term traffic requirements of the
nodes are known, let denote the operation of transmitting
packets from node to node , and let be the number of
packets that need to be transmitted between these two nodes in
the network. Let us also assume that the nodes are equipped
with fast-tunable transmitters, so that no cost is incurred when a
transmitter switches from one wavelength to another, but that
receivers are fixed tuned to a certain wavelength. (These are
tunability characteristics of nodes in the Helios DARPA NGI
project [1].) Let us also consider the operations of transmitting
packets to a single receiveras a job . Then, scheduling the
packet transmissions over the wavelengths is equivalent to
thepreemptiveSWA problem, since the transmission of the
packets of operation can be preempted (at the end of any
packet) and continued at a later time. Note that minimizing the
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makespan for this problem implies balancing the traffic across
the various wavelengths by properly assigning the fixed-tuned
receivers to wavelengths.

WDM IP routers employing multiprotocol lambda switching:
Consider a backbone network of high-speed IP routers intercon-
nected by fiber lines. The routers communicate using general-
ized multiprotocol label switching (GMPLS) [7], an extension
of MPLS [6] also referred to as multiprotocol lambda switching
(MP S). Specifically, each router originates a number of light-
paths to other routers in the backbone network, and it forwards
all packets it receives onto one of its outgoing lightpaths. To
avoid packet reordering at the destination router, packets for a
given destination (i.e., those carrying the same MPLS label)
must be sent over the same lightpath in a first-come–first-served
order.

Now, consider an edge backbone router acting as the ingress
node for IP routers accessing the MPS network. Let us as-
sume that this ingress router originateslightpaths to other
backbone routers. The problem that arises is to schedule packets
received by the access routers for transmission on one of the

lightpaths such that packets with the same destination are sent
on the same lightpath and the overall traffic from theaccess
routers is balanced across thelightpaths. It can be seen that
this is an instance of the SWA problem defined earlier.

Grooming packet traffic over WDM SONET/SDHrings: In this
scenario, we consider a WDM ring network that carries either
ATM fixed-size cells or IP variable-size packets over multiple
wavelengths, with each wavelength employing SONET/SDH.
We assume that each ring node is equipped with a switch which
allows it toswitch traffic fromanyof thewavelengths terminating
at the node to any wavelength originating from the same node.
In order to increase the utilization of wavelength and decrease
the network equipment cost, each ring node must appropriately
groomlower-rate streams into high-rate wavelengths [5].

Consider a ring node that originateswavelengths. The ring
receives traffic 1) from other ring nodes (arriving over wave-
lengths terminating at the node), or 2) from nonring access de-
vices (i.e., ATM switches or IP routers) attached to the node. All
traffic from this node to the other nodes in the ring must be car-
ried by these wavelengths. Furthermore, for the grooming to
be effective, all traffic for a certain destination must be aggre-
gated onto the same wavelength. Because of the synchronous
nature of SONET/SDH, lower-rate traffic streams cannot be pre-
empted, and anonpreemptiveSWA problem arises in this case.

While all the applications described in this section are in
packet scheduling in WDM networks, for the rest of the paper
we will use terminology from the multiprocessor scheduling lit-
erature. The reader should keep in mind, however, that the terms
“processor,” “processing time,” and “job” correspond to “wave-
length,” “transmission time,” and “destination,” respectively, in
the network environment.

III. PREEMPTIVE SCHEDULING

Let us first assume that the operations of any job are
preemptable, i.e., there is no cost in preempting an operation
and resuming it later on thesameprocessor (refer to constraint
C1). We have the following result.

Lemma 1: The preemptive SWA problem is -complete.
Proof: Consider an instance of the SWA problem with

processors and jobs. Each job , of
the instance consists of a single operation with nonzero
processing time (i.e., all other operations

, of job are such that ). Since an operation
may not change processor after a preemption, this special case
of the preemptive SWA is equivalent to thePARTITIONproblem
[9], which is -complete.

An approximation algorithm for the preemptive SWA
problem may now be obtained by considering the problem
decomposition described previously. The approximation al-
gorithm consists of two steps. The first step assigns jobs to
processors in a way that attempts to balance the amount of work
(i.e., the total processing time) assigned to each processor. The
second step is to apply existing approximation algorithms to
the resulting open-shop problem.

Algorithm DA (Decomposition Algorithm):

Step 1) Let be the total processing time required by job
. Considering each job as

an independent task with processing time equal to
, run an approximation algorithm for the resulting

multiprocessor problem to assign each jobto a
processor.

Step 2) Let denote the set of jobs assigned to processor
at the end of Step 1). For each processor, create

new operations with processing time
. Now, the original SWA problem has

been transformed to a preemptive open-shop sched-
uling problem with processors and operations

. Run the Gonzalez and Sahni algorithm [12] to
obtain an optimal schedule for the new open-shop
problem.

Lemma 2: Algorithm DA is an approximation algorithm for
the preemptive SWA problem.

Proof: Correctness. Step 1) assigns each job to a certain
processor, thus, all operations of a job will be executed on the
same processor, satisfying constraint C1. In Step 2), a preemp-
tive open-shop problem is constructed, such that the processing
time of an operation for a source on processor is the
sum of the processing times of operations for which job
has been assigned to processor. Consider two jobs and ,

. If the jobs have been assigned to two different proces-
sors, the Gonzalez and Sahni algorithm ensures that constraint
C2 is satisfied. If the jobs have been assigned to the same pro-
cessor, constraint C2 is also satisfied since, whenever operation

is being processed, at most one of operationsor
(which are part of ) is processed, but not both. Finally, the
operation of the Gonzalez and Sahni algorithm does not violate
constraint C3.

Approximation Claim. Consider the preemptive open-shop
problem in Step 2), and let (respectively, ) denote the
maximum processing time associated with any processor (re-
spectively, source). By construction of the open-shop problem
we have that

(7)
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where the quantity for the original SWA problem is de-
fined in (3). Note, now, that an-approximation algorithm is
used in Step 1) for the multiprocessor scheduling problem. This
approximation algorithm respects constraint C1 only, therefore
the optimal for the multiprocessor scheduling problem is at most
equal to the optimal for the SWA problem. Thus

(8)

where refers to the SWA problem. Since the Gonzalez
and Sahni algorithm for the preemptive open-shop scheduling
problem is optimal [12], the schedule produced by the decom-
position algorithm has length

(9)

where the last inequality follows from (5).
The above lemma implies that, if we use LPT (respectively,

MULTI-FIT) in Step 1), then the decomposition algorithm
is a 4/3-approximation (respectively, 1.2-approximation)
algorithm. On the other hand, the decomposition algorithm
becomes a PTAS if the PTAS developed by Hochbaum and
Schmoys for the multiprocessor scheduling problem is used in
Step 1) to obtain the assignment of jobs to processors.

IV. NONPREEMPTIVESCHEDULING

Let us now consider the nonpreemptive SWA problem,
whereby, once an operation has started processing on a
certain processor, it must be completed before the processor
can start executing another operation. The following lemma
proves that the nonpreemptive version of the problem is also

-complete.
Lemma 3: The nonpreemptive SWA problem is -com-

plete.
Proof: Consider an instance of the nonpreemptive

SWA problem with processors and jobs. Each job
, of the instance consists of a single operation

with nonzero processing time (i.e., all other operations
, of job are such that ). This

instance consists of independent tasks (theoperations )
and processors. Thus, the well-known -complete
multiprocessor scheduling problem [9], [14] is a special case of
the nonpreemptive SWA problem.

A. Algorithm Based on Problem Decomposition

An algorithm based on a problem decomposition, similar to
the one developed for the preemptive case in Section III, can also
be applied to this problem. However, nonpreemptive open-shop
scheduling is an -complete problem [12], but it is known
that any list-scheduling algorithm is a 2-approximation algo-
rithm for this problem [16]. Therefore, instead of the Gonzalez
and Sahni optimal algorithm for preemptive open-shop sched-
uling, a 2-approximation list-scheduling algorithm for the non-
preemptive open-shop scheduling problem is applied in Step 2)
of the decomposition algorithm DA in Section III. We now have
the following lemma.

Lemma 4: If an -approximation algorithm is applied to the
corresponding multiprocessor scheduling problem in Step 1

of the decomposition, then the decomposition algorithm DA
is a -approximation algorithm for the nonpreemptive SWA
problem.

Proof: Correctness.The proof of correctness is similar to
the one given for the preemptive SWA problem in Lemma 2.

Approximation Claim.If an -approximation algorithm is
used in Step 1) for the multiprocessor scheduling problem, by
construction of the open-shop problem we have that (refer also
to the proof of Lemma 2)

(10)

(11)

where the quantity for the original SWA problem is de-
fined in (3). Since list scheduling is a 2-approximation algorithm
for the nonpreemptive open-shop scheduling problem [12], the
schedule produced by the decomposition algorithm has length

(12)

where the last inequality follows from (5).
We now note that, while the decomposition algorithm DA will

correctly schedule the operations of the nonpreemptive SWA
problem (i.e., the resulting schedule will satisfy constraints C1,
C2, and C3), it may actually do more than is needed to satisfy the
nonpreemption requirement. Consider jobsand ,
if they exist, that have been assigned to the same processor. In
Step 2) of the algorithm, a new operation , is
created for the new open-shop problem, with a processing time
equal to the sum of the processing times of operationsand

(and, possibly, the operations of other jobs assigned to the
same processor) of the original SWA problem. The list-sched-
uling algorithm in Step 2) applied to the open-shop scheduling
problem will ensure that the operation will not be pre-
empted, while the requirement for the original SWA problem
is simply that operations and not be preempted.

B. Algorithms Based on List Scheduling

We now present list-scheduling algorithms for the nonpre-
emptive SWA problem. We first show that a naive implementa-
tion of list scheduling can produce schedules that are a factor of

from the optimal schedule. We then describe a more refined
version of list schedule that yields a 2-approximation algorithm
for the nonpreemptive SWA problem.

We will need the following definitions in our discussion. A
job is said to beassignedto processor at time if

1) no operation , has been executed (fully
or partially) on any processor before time, and

2) processor is idle at time and starts processing some
operation , at that time.

Because of the problem constraints, once a jobis assigned to
processor , all operations must be executed
on . An operation is calledschedulableon processor at
time if

1) job has not been assigned to a different processorat
some time , and

2) an incompatible operation (i.e., such that or
) is not being executed by any processorat time .
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Fig. 1. Problem instance that asymptotically achieves the upper bound of Lemma 5.

When a processor becomes idle at some time, it can only
start processing an operation that is schedulable at time.

1) List Scheduling, Version 1:
Algorithm LS1 (List Scheduling, Version 1):All the tasks

, are initially arranged in an arbitrary list
. Consider a processorwhich becomes idle at time. If list
is empty, the algorithm terminates. Otherwise, processor

starts processing the first schedulable operation in , and
the operation is removed from the list. If no schedulable oper-
ation is found in , processor remains idle until time
at which another processorthat was busy at timecompletes
its operation. At time , processors and each scan list to
select a new schedulable operation to process. (Ties are broken
arbitrarily).

Lemma 5: Algorithm LS1 is an -approximation algorithm
for the nonpreemptive SWA problem.

Proof: Correctness. By construction, the algorithm
ensures that a processor may execute at most one operation at
any time instant, thus satisfying constraint C3. The definition
of a “schedulable” operation above, and the requirement that a
processor, upon becoming idle, selects a schedulable operation
for execution, also ensure that the algorithm will never violate
constraints C1 or C2.

Approximation Claim: Let denote the makespan of a
schedule produced by algorithm LS1, and let denote the
total idle time (over all processors) in this schedule. We first
observe that at no point in time can all processors be idle
in a schedule produced by using algorithm LS1, thus,

. Because of (4), we obtain

(13)

The following problem instance shows that, asymptotically,
the bound of the lemma is atight one. The instance consists
of a number of processors and a number of jobs whose
operations are shown in Fig. 1. The first jobs consist of two
operations, one long operation of length and
one short operation of length . The last jobs consist

of exactly short operations each, of length . Let
. The optimal schedule, shown in Fig. 2(a), is such that

processor , executes exactly two jobs, say, jobs
and . This schedule has length .

On the other hand, it is easy to see that under algorithm LS1, it is
possible for one processor, say, processor 1, to be assigned jobs
1 through , while processor , is assigned
only one of the last jobs. Such a schedule is illustrated in
Fig. 2(b), and has length

(14)

Then

(15)

2) List Scheduling, Version 2:We now present a different
version of list scheduling which yields a 2-approximation algo-
rithm for the nonpreemptive problem.

Algorithm LS2 (List Scheduling, Version 2):The jobs
, are initially arranged in a list . The opera-

tions of each job are also arranged in a list . A list is
also associated with each processor, and it is initialized to the
empty list. Consider a processorthat becomes idle at time
, and let be the operation that was just completed by the

processor. Processorselects an operation to process next by
taking the following three steps in the order presented.

1) If there exists an operation , in the pro-
cessor’s list , it is removed from the list andstarts pro-
cessing this operation at time(note that operation
is schedulable on at time , since scheduling it does not
violate constraint C2).

2) If no operation is found in Step 1), starts pro-
cessing any other schedulable operation in its list, and
the operation is removed from the list.

3) If no operation is found in the first two steps, list is
scanned. If is empty, the algorithm terminates. Other-
wise, let be the first job in with an operation that
is schedulable on processorat time , if one exists. Job
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(a)

(b)

Fig. 2. (a) Optimal schedule and (b) worst-case schedule produced by algorithm LS1 for the instance shown in Fig. 1.

is removed from , and its list of operations is
appended to processor’s list . Processor starts pro-
cessing the first schedulable operation in its new list,
and the operation is removed from.

If no schedulable operation is found at the end of the third step,
processor remains idle until time at which another
processor that was busy at timecompletes its operation. At
time , processors and each repeat the above procedure to
select a new schedulable operation to process. Ties are resolved
using the following rule.

• Consider two processorsand which start the process
of selecting a new operation at the same time. Let us
assume that processor finds an operation in Step 1)
while processor finds an operation at Step 2) or 3), but
the two operations cannot be executed simultaneously.
Then, processor is allowed to proceed while processor

must either find another compatible operation or remain
idle until a future time . Otherwise, ties are broken
arbitrarily.

Lemma 6: Algorithm LS2 is a 2-approximation algorithm
for instances of the nonpreemptive SWA problem for which no
operation has zero processing time (i.e., ).

Proof: Correctness.By construction, the algorithm sat-
isfies constraint C3. The fact that when the first operation of
a job is schedulable on a processor, the job is removed
from list and is appended to processor’s list, ensures that
constraint C1 is not violated. Finally, the requirement that a
processor, upon becoming idle, selects a schedulable operation
for execution, guarantees that the resulting schedule will satisfy
constraint C2.

Approximation Claim.Consider a schedule built using al-
gorithm LS2, and let be the job that is the last to be assigned
to a processor (i.e., all other jobs have been assigned to proces-
sors before ). Let be the time when job is assigned to a
processor. We claim that no processor is idle before time. To
see that the claim is true, assume that a processorbecame idle
at time . Note now that at most different opera-
tions were being processed at time, one at each of the other
processors. By assumption, includes nonzero op-
erations, and of these operations are schedulable on

at time . Thus, under algorithm LS2 and because of the way
ties are resolved, job should have been assigned toat that
point, contradiction.

At time , all jobs have been assigned to processors. Let
be the partition of the job set such that is

the subset of jobs that have been assigned by the algorithm to
processor . Let be the amount of pro-
cessing that operation has received up to time. Consider
a new scheduling problem with processors and jobs ,
where each job is a set of operations, ,
and the processing time of operation is given by

(16)

This new problem is an instance of open-shop scheduling [12]
with processors and jobs , where each job has a single
operation to be executed on each processor. We now ob-
serve that algorithm LS2 is also a list-scheduling algorithm for
this open-shop problem. To see this, consider a processorthat
becomes idle at time . Since the last job was assigned
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to some processor at time, no new jobs will be assigned to
at or after time . Let be the operation that was just com-
pleted by at time . Because of the first step in selecting a new
job under algorithm LS2, if there is another job in list
will start processing at time . When becomes idle again,
the same selection process will be repeated until all operations

with the same sourcein list are completed (note that
each of these operations are schedulable onat the instant the
previous one is completed). Thus, these operationswill be
executed back-to-back, in some order, without interruption, and
no operations with the same source will be added to listafter
time . But all these operations are part of the operation

of job in the open shop problem. Consequently, oper-
ation will be executed without preemption on processor
by algorithm LS2. Therefore, algorithm LS2 is a list-scheduling
algorithm for the open-shop problem.

Let (respectively, ) denote the maximum pro-
cessing time associated with any processor (resp., source) in the
open-shop problem. Since there is no idle time in the schedule
constructed by algorithm LS2 until time, we have that

SWA (17)

(Note that we give the problem to which the various parame-
ters are related in parentheses: OS for open-shop, and SWA for
the original SWA problem.) Since LS2 is a list-scheduling al-
gorithm for the open-shop problem, and any list-scheduling al-
gorithm is a 2-approximation algorithm for the nonpreemptive
open shop, we also have that

OS OS (18)

Finally, we get the desired result as follows:

SWA OS

SWA

SWA (19)

Now, assume that some of the operations in the original non-
preemptive SWA problem are zero. Without loss of generality,
assume that each job consists of at least one operation of
nonzero length (otherwise, we can remove this job reducing
the problem into an equivalent one with processors and

jobs). We can obtain a schedule that is at most twice the
optimum one for this problem by taking the following three
steps. First, replace all zero-length operations with ones of
length equal to . Then, run algorithm LS2 on this new
instance of the SWA problem for which no operation has zero
processing time. Finally, remove from the schedule obtained by
algorithm LS2 all operations that are of zero processing time
in the original problem.

To see that this schedule is at most twice the optimum for
the original SWA problem (the one with some operation of zero
length), we observe that at most operations are added to
the problem instance in the first step. Now, note that a schedule
for the new problem can be obtained by sequentially processing

the operations on one processor after the end of the
optimal schedule for the original problem, thus

(20)

The optimum schedule for the new problem is at most equal to
this schedule. Since at the third step of the algorithm we remove
some operations from the schedule produced by LS2, we have
that

(21)

By selecting an appropriate value for, we see that the schedule
obtained in this way for the original problem is at most twice
the optimal schedule.

Finally, we note that algorithm LS2 is valid in an on-line con-
text, where the jobs are not known in advance but appear one
after the other.

V. CONCLUDING REMARKS

We considered the scheduling and wavelength assignment
(SWA) problem which has applications in packet-switched
optical WDM networks. We proved that the SWA problem is

-complete for both the preemptive and the nonpreemptive
cases. Furthermore, we proposed two efficient approximation
algorithms. For the preemptive case, we described an efficient
approximation algorithm based on a natural decomposition of
the problem. For the nonpreemptive case, we presented two
list-scheduling algorithms, the second of which is a 2-approxi-
mation algorithm for both the off-line and the on-line contexts.
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