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Fast Exact ILP Decompositions for
Ring RWA
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Abstract—Wavelength division multiplexing rings are now
capable of supporting more than 100 wavelengths over a
single fiber. Conventional link and path formulations for the
routing and wavelength assignment problem are inefficient
due to the inherent symmetry in wavelength assignment
and the fact that the problem size increases fast with
the number of wavelengths. Although a formulation based
on maximal independent sets (MIS) does not have these
drawbacks, it suffers from exponential growth in the number
of variables with increasing network size. We develop a new
ILP (integer linear program) formulation based on the key
idea of partitioning the path set and representing the MIS in
the original network using the independent sets calculated in
each of these partitions. This exact decomposition trades off
the number of variables with the number of constraints and, as
a result, achieves a much better scalability in terms of network
dimension. Numerical results on ring networks of various
sizes demonstrate that this new ILP decomposition achieves
a decrease of several orders of magnitude in running time
compared to existing formulations. Our main contribution is
a novel and extremely fast technique for obtaining, in a few
seconds using commodity CPUs, optimal solutions to instances
of maximum size SONET rings with any number of wavelengths;
such instances cannot be tackled with classical formulations
without vast investments in computational resources and time.

Index Terms—Integer linear programming (ILP); Ring
networks; Routing and wavelength assignment (RWA).

I. INTRODUCTION

O ptical networking forms the foundation of the global
network infrastructure; hence the planning and design of

optical networks [1] is crucial to the operation and economics
of the Internet and its ability to support critical and reliable
communication services. In wavelength division multiplexing
(WDM) networks, traffic is carried over lightpaths that
are optically switched and, in the absence of wavelength
converters, occupy the same wavelength on all of the fiber
links along their path. Routing and wavelength assignment
(RWA) is the problem of selecting a path and wavelength for
each connection demand, subject to the constraint that no
two paths sharing a link are assigned the same wavelength.
RWA is one of the central problems in the dimensioning,
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control, and engineering of WDM networks, and it appears as
a subproblem in most network design applications, including
traffic grooming [2–4], survivability design [5,6], and traffic
scheduling [7,8].

In offline RWA [9], the input typically consists of a set
of (forecast) traffic demands (i.e., requested connections),
and the objective is either to establish all the connections
using a minimum number of wavelengths or to maximize the
number of accepted connections (in which case the number
of wavelengths is taken as a constraint). We refer to the
former variant as the minRWA problem and to the latter as
the maxRWA problem. Since both problems are NP-hard [10],
existing optimization techniques cannot be used to solve
optimally instances (with a ring or mesh topology) arising in
practice. Consequently, many heuristic solution methods have
been developed and evaluated under various assumptions and
network settings [11,12].

In this work, we are interested in obtaining optimal
solutions to the offline RWA problem. Several mixed integer
linear program (MILP) formulations have been proposed in
the literature for both the minRWA and maxRWA problems.
Most formulations can be categorized as either link-based (see,
e.g., [13]) or path-based (see, e.g., [14]), which suffer from two
limitations: (1) their size increases rapidly with the number
W of wavelengths, and (2) they have a symmetry problem
in that multiple solutions with the same objective value can
be obtained by simply changing the order of wavelengths.
Since the ILP solver has to evaluate all W! distinct optimal
solutions, the running time can be unnecessarily long. Hence,
these formulations do not scale to networks with 100 or
more wavelengths per link that can be realized with current
technology.

An alternative formulation was developed in [14] to
capitalize on the fact that the wavelength assignment problem
is equivalent to the graph multi-coloring problem. This
formulation is based on maximal independent sets (MISs)
and is such that the problem size is independent of the
number of wavelengths. However, the number of MISs grows
exponentially with the size n of the graph to be colored. For
a general graph, the upper bound on the number of MISs
is 3(n/3). Note that, in the RWA problem formulation, the
size of the graph is equal to the number of paths in the
original network, which poses severe scalability challenges.
Consequently, rather than solving the MIS formulation
directly, the authors of [14] used its LP relaxation to obtain
lower bounds.

To overcome this limitation, column generation techniques
may be used. Column generation, first proposed in the context
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of graph coloring in [15], is an iterative technique which
formulates the problem with a subset of MISs and adds any
necessary additional variables on the fly by solving a second
simpler LP. This technique has also been applied to solve
the RWA problem in [16,17]. Although the column generation
method does yield smaller problem sizes for each iteration, it
nevertheless may require a large number of iterations and a
recent comprehensive study specific to the RWA problem [17]
reports low speed-up factors. Consequently, column generation
in its basic form may not scale to realistic network sizes to be
of practical value for network operators.

In this paper, we consider the offline RWA problem in WDM
ring networks. Although operators have started to transition
to mesh networks, vast parts of the current infrastructure are
based on SONET/SDH rings; for instance, AT&T operates more
than 6700 rings in North America (http://www.isp-planet.com/
resources/backbones/att.html). Furthermore, DWDM trans-
port networks with topological rings are being deployed that
are based on technologies other than SONET (e.g., Ethernet,
IP/MPLS, etc.). Hence, optimal solutions for WDM rings will be
important for the foreseeable future, and they may also provide
insight as regards extending the techniques to mesh networks.

Starting with the MIS formulation, we develop a decom-
position approach to obtain an equivalent formulation with
a much smaller number of variables. Our approach consists
of partitioning the path set and representing the MIS in the
original network using the independent sets calculated in
each of these partitions. The result is a suite of formulations
that trades off the number of variables with the number of
constraints and, as a result, achieves a much better scalability
in terms of network size. We present numerical results to
demonstrate that our new formulation achieves a reduction in
running time of several orders of magnitude compared to the
link, path, or original MIS formulation. Specifically, we show
that ring networks of least 16 nodes (the maximum size of a
SONET ring) can be solved in just a few seconds, while larger
rings up to 24 nodes (e.g., for transport technologies other than
SONET) can be solved efficiently. Therefore, our new approach
has several unique practical benefits for network designers and
operators, including (1) the ability to solve the RWA problem
optimally for any existing WDM ring network and for any
number of wavelengths, (2) the ability to perform extensive
“what-if” analysis to evaluate the sensitivity of the optimal
solution to uncertainties in forecast traffic demands, and (3)
the potential to speed up the solution of other hard network
design problems for which RWA is a subproblem. While it
may not be possible to obtain optimal solutions to all hard
network design problems that include RWA as a subproblem,
the capability of solving larger instances to optimality makes it
possible to evaluate the performance of heuristics and develop
more efficient ones.

The rest of the paper is organized as follows. In the next
section, we introduce the network model and notation, and,
for the sake of completeness, we review earlier link, path, and
MIS formulations of the minRWA problem. In Section III, we
describe a new and exact formulation based on a decomposition
of the MIS. We present numerical results in Section IV, and we
conclude in Section V.

II. NOTATION AND EXISTING RWA FORMULATIONS

The physical topology of an optical network can be
represented as a graph G = (N ,L ), where N is the set of N
network nodes and L is the set of L physical links connecting
the nodes. We assume that each physical link is directed and
consists of a single fiber supporting W wavelength channels.
Nodes are connected with two links in opposite directions. The
amount of traffic demand from node s to node d, in terms of the
number of lightpaths (connections) to be set up, is represented
as tsd , and T = [tsd] forms the overall network traffic matrix.

The set of all node pairs in the network is denoted as
Z , i.e., Z = {(i, j) : i, j ∈ N , i 6= j} and Z = |Z |. In a ring
network, there are two possible paths between the members
of a node pair (i, j) ∈ Z : one in the clockwise and the other
in the counter-clockwise direction, represented as pi j,cw and
pi j,ccw, respectively. The set of all paths P is the union of
the set of clockwise paths (denoted by P cw) and the set of
counter-clockwise paths (denoted by P ccw), where P k = {pi j,k}
for k = cw, ccw, and P = |P |.

Using the above notation, the minRWA problem can be
defined as determining the minimum number of wavelengths
to satisfy all the demands in T, subject to the constraint
that no two lightpaths sharing a common link use the same
wavelength. On the other hand, the maxRWA problem can be
defined as maximizing the number of satisfied demands for a
given number of wavelengths, subject to the same constraint.
In the following subsections, we present link, path, and
MIS formulations of the minRWA problem, using consistent
notation. To avoid repetition, we omit the formulations for
the maxRWA problem; however, these can be derived from
the formulations presented here by appropriately adapting the
objective function and some of the constraints.

A. Link Formulation

Denoting the set of links outgoing from (respectively,
incoming to) node n as L+

n (respectively, L−
n ), the minRWA

formulation can be stated as follows:

minV

subject to

∑
l∈L +

n

cw,l
i j − ∑

l∈L −
n

cw,l
i j =


0 n 6= i, j

ti j n = i ∀n ∈N ,

−ti j n = j (i, j) ∈Z ,w

, (1)

∑
(i, j)∈Z

cw,l
i j ≤ 1 ∀l ∈L ,∀w, (2)

∑
(i, j)∈Z

∑
l∈L

cw,l
i j ≤ uwZL ∀w, (3)

V ≥ wuw ∀w, (4)

where cl,w
i j = 1 if there exists a lightpath from node i

to node j that uses wavelength w on link l and is 0
otherwise. uw is a binary variable which indicates whether
wavelength w is used, and V is the number of wavelengths
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used. Expressions (1) are the multi-commodity flow equations
corresponding to the routing subproblem and expression (2)
is the wavelength constraint. Constraints (3) ensure that
uw is 1 whenever wavelength w is used by any lightpath
on any node and expression (4) sets V to the index of the
largest wavelength used. In the actual implementation, we use
separate constraints for the incoming and outgoing lightpaths
at source and destination nodes in expression (1) to improve
efficiency.

B. Path Formulation

For ring networks, there are only two possible paths
between the members of each node pair. Hence, the routing
subproblem reduces to selecting either the clockwise or
the counter-clockwise path for each lightpath between the
members of a node pair, which results in significant reduction
in problem size compared to that for arbitrary network
topologies. The path formulation for the minRWA problem is
given as follows:

minV

subject to

∑
k=cw,ccw

∑
w

cw
i j,k = ti j ∀(i, j) ∈Z , (5)

∑
(i, j)∈Z

∑
k=cw,ccw

cw
i j,k X l

i j,k ≤ 1 ∀l ∈L ,∀w, (6)

∑
(i, j)∈Z

∑
k=cw,ccw

cw
i j,k ≤ uwP ∀w, (7)

V ≥ wuw ∀w, (8)

where cw
i j,k is the binary decision variable indicating whether

there exists a lightpath on path pi j,k which uses wavelength

w. The variable X l
i j,k = 1 if pi j,k uses link l and is 0 otherwise.

Expression (5) ensures that all demands are satisfied, while
expression (6) is the wavelength constraint.

C. MIS Formulation

The wavelength assignment problem can be transformed
into a graph multi-coloring problem by defining a new graph
Gp where each node corresponds to a path in G and two nodes
are connected to each other in Gp if the corresponding paths
in G share a common link. The problem is then equivalent to
assigning separate colors to a node in Gp for each lightpath
established over the corresponding path in G such that the
two adjacent nodes are not assigned the same color. Thus, a
set of paths in G can be assigned the same wavelength if the
corresponding nodes in Gp form an independent set.

We denote the number of lightpaths on path pi j,k as bi j,k,
and let vm be the number of wavelengths assigned to the
independent set m. Let M denote the set of all MISs in Gp,
which can be calculated efficiently using the Bron–Kerbosch
algorithm [18]. Also, let Y m

i j,k be the path–path set incidence

function defined as

Y m
i j,k =

{
1, if path set m contains path pi j,k,

0, otherwise.
(9)

The ILP formulation can now be written as

minV

subject to ∑
k=cw,ccw

bi j,k = ti j ∀(i, j) ∈Z , (10)

bi j,k ≤ ∑
m∈M

vmY m
i j,k ∀(i, j) ∈Z ,k = cw, ccw, (11)

∑
m∈M

vm ≤V . (12)

The first set of constraints ensures that the traffic demand
between the members of each node pair is satisfied by using
lightpaths over the clockwise and counter-clockwise paths.
Since the number of wavelengths assigned to a path is the sum
of the number of wavelengths assigned to MISs which include
that path, the second set of constraints ensures that each path
is assigned a sufficient number of wavelengths.

The MIS formulation has the clear advantage of being
independent of the number W of wavelengths, whereas the
sizes of the path-based and link-based formulations increase
with W. Moreover, the link and path formulations have a
symmetry problem, as we discussed earlier. On the other hand,
the number of MISs in Gp increases exponentially with the
number of paths, which in turn increases quadratically with
the number of nodes in G. Therefore, the number of variables,
vm, grows rapidly with the size of the network, limiting the
applicability of the MIS formulation to small networks.

III. MAXIMAL INDEPENDENT SET DECOMPOSITION

(MISD) AND RWA FORMULATIONS BASED ON

MISD

Recall that the limiting factor for the basic MIS formulation
of [14] is the exponential increase in the number of MISs
with the number of vertices of Gp. We now present a
decomposition approach to obtain a formulation equivalent
to expressions (10)–(12) with a much smaller number of MIS
decision variables. This is achieved by partitioning the path
set P and representing the MISs in the original network using
the independent sets calculated in each of these partitions. The
method is based on recursively identifying two nearly equal
and preferably large independent subgraphs in the path graph,
Gp, and dividing Gp into three components; two of these are
the identified independent subgraphs and the third subgraph
includes the rest of the nodes in Gp. We first illustrate how the
MIS decomposition (MISD) technique works for two and four
partitions of the link set and then generalize it to 2x partitions.
We use the notation MISD-2x to denote the ILP formulation in
which the link set is partitioned into 2x groups. We emphasize
that the decomposition is exact, not a heuristic approach, and
thus yields optimal results for ring networks.
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A. Maximal Independent Set Decomposition With Two
Independent Path Sets: MISD-2

MISD-2 is based on the observation that the clockwise
paths of a ring do not intersect with counter-clockwise
paths. Therefore Gp can be divided into two disconnected
components, Gcw

p and Gccw
p , corresponding to the sets P cw and

P ccw, respectively. Let M cw (respectively, M ccw) denote the
set of MISs in Gcw

p (respectively, Gccw
p ). Also, we define vk

m as

the number of wavelengths assigned to the MIS m ∈ M k for
k = cw, ccw. Then expressions (11) and (12) in the basic MIS
formulation are replaced with

bi j,k ≤ ∑
m∈M k

vk
m X m

i j,k ∀(i, j) ∈Z ,k = cw, ccw, (13)

∑
m∈M k

vk
m ≤V k = cw, ccw. (14)

Note that, for each mi ∈ M cw and m j ∈ M ccw, mi ∪m j is
an MIS for Gp. Hence, the number of MISs in the original path
graph is |M | = |Mcw|× |Mccw|. Due to the construction of sets
M cw and M ccw, this MISD-2 formulation contains a number
of MIS decision variables that are equal to 2

p|M |. This is a
substantial decrease in the size of the problem compared to
the basic formulation above that becomes more significant as
the number of ring nodes increases.

B. Maximal Independent Set Decomposition With Four
Independent Path Sets: MISD-4

In order to further decrease the number of variables in
the formulation, the network topology can be partitioned into
four parts, so as to represent the MISs in the path graph
using smaller independent sets from the smaller subgraphs.
Specifically, Gk

p (k = cw, ccw) is divided recursively into three

subgraphs: Gk,core
p , Gk,0

p , and Gk,1
p . The partitions are selected

such that there are no links between the nodes in Gk,0
p and

the nodes in Gk,1
p . The remaining nodes are collected in the set

Gk,core
p . This operation is equivalent to partitioning the path

set P k into three subsets, where none of the paths in P k,0

intersect with any of the paths in P k,1. Also, P k,core includes
the remaining paths in P k, which may intersect with the paths
in P k,0 and/or P k,1.

For the ring network case, an appropriate partitioning can
be obtained, based on the links that each path uses. Assuming
that nodes in the ring network are numbered from 1 to N in the
clockwise direction, and denoting the clockwise (respectively,
counter-clockwise) set of links as L cw (respectively, L ccw),
the link set can be divided into four sets: two sets, L cw,0 and
L ccw,0, containing the links in L cw and L ccw, respectively,
among nodes {1, . . . ,bN/2c}, and two sets, L cw,1 and L ccw,1,
containing the links in L cw and L ccw, respectively, among
nodes {bN/2c+1, . . . , N}. Accordingly, the path set can be divided
into six sets:

• P k,0 ⊂ P k (k = cw, ccw) is defined as the set of paths that
use only links in L k,0,

• P k,1 ⊂ P k (k = cw, ccw) is defined as the set of paths that
use only the links in L k,1,

• P k,core ⊂ P k (k = cw, ccw) consists of the paths that use
links from both L k,0 and L k,1.

This partition results in four independent path sets, namely,
P cw,0, P cw,1, P ccw,0, and P ccw,1; hence we refer to the
resulting formulation as MISD-4.

Unlike in the MISD-2 formulation, the three subgraphs in
Gk

p (k = cw, ccw) are not completely disjoint, so MISs in Gk
p

cannot be represented simply by the union of MISs in smaller
subgraphs. Therefore, we introduce the notion of a “core” set.
Core sets for Gk

p are denoted as Qk and defined as the sets

of nodes in Gk,core
p which are maximal subsets of any MIS in

Gk
p. In other words, Qk includes the intersection of any MIS in

Gk
p with the node set Gk,core

p as an element. Consequently, any

MIS in Gk
p can be written as the union of a set in Qk and some

nodes in Gk,0
p and/or Gk,1

p . The core sets are calculated using
the following algorithm, called Algorithm 1. The running time
complexity of the algorithm is O(|Qk|N2).

Algorithm 1 Calculation of core sets Qk.

Initialize Qk = MIS in Gk,core
p .

for each core set q ∈Qk do
for each node p ∈ q do

if p has a link to a node r ∈Gk,0
p ∪Gk,1

p , and none of the
nodes in q \{p} have a link to that node then

Append the set q \{p} to Qk.
end if

end for
end for
Add ; to Qk.

Finally, for each core set q ∈ Qk, the maximal sets of nodes
in Gk,r

p which are independent from each other and the nodes

in q, M
k,r
q , are calculated for k = cw, ccw, r = 0,1. With these

definitions, for each q ∈ Qk and mi ∈ M
k,0
q and m j ∈ M

k,1
q ,

mi ∪ q∪m j corresponds to an MIS in Gk
p.

The MISD-4 formulation can now be obtained by replac-
ing expressions (11) and (12) in the basic MIS formulation with
the following equations:

bi j,k ≤ ∑
q∈Qk

vk,core
q X q

i j,k ∀pi j,k ∈P k,core,k = cw, ccw,(15)

bi j,k ≤ ∑
q∈Qk

∑
m∈M

k,r
q

vk,r
q,m X m

i j,k
∀pi j,k ∈P k,r ,

k = cw, ccw, r = 0,1
, (16)

∑
q∈Qk

vk,core
q ≤V k = cw, ccw, (17)

∑
m∈M

k,r
q

vk,r
q,m = vk,core

q ∀q ∈Qk, r = 0,1. (18)

In this formulation, vk,core
q is the number of wavelengths

assigned to the core set q ∈ Qk and vk,r
q,m denotes the number
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1

4 2

3

Fig. 1. (Color online) The four-node ring network for the example in
Subsection III.C.

of wavelengths assigned to the set m ∈M
k,r
q . Expressions (15)

and (16) ensure that each set is assigned a sufficient number
of wavelengths that the number of wavelengths on each path is
greater than or equal to the number of lightpaths on that path.
Expression (17) sets V to the number of wavelengths used,
while constraints (18) ensure consistency between wavelength
assignments in different path partitions.

This decomposition approach can be further extended to
develop formulations with 8 (MISD-8), 16 (MISD-16), or,
in general, 2x independent path sets (MISD-2x). In this
generalized MISD formulation, the ring topology (i.e., the
link set) is partitioned in half recursively, resulting in more
subgraphs in Gp but a smaller number of total independent
sets in all subgraphs. The details of the general decomposition,
MISD-2x, are presented in Appendix A.

C. Illustrative Example

To better clarify the operation of the MISD algorithms,
in this section we present a simple illustration using the
four-node ring network depicted in Fig. 1. Each path is denoted
as the sequence of nodes that it traverses.

MIS Formulation. The basic algorithm calculates the set
of MISs, M , using the whole set of paths, P , without
partitioning. The number of MISs is found to be 121.

MISD-2 Formulation. The MISD-2 algorithm partitions
the sets into two subsets. The set of clockwise paths is
P cw = {12,23,34,41,123,234,341,412,1234,2341,3412,4123},
and the set of counter-clockwise paths is P ccw =
{14,43,32,21,143,432,321,214,1432,4321,3214,2143}. Then,
the MISs in P cw and P ccw are calculated as follows: M cw =
{{12,23,341}, {23,34,412}, {34,41,123}, {12,2341}, {41,12,234},
{23,3412}, {34,4123}, {41,1234}, {123,341}, {234,412}, {12,23,34,
41}},M ccw = {{14,43,321}, {43,32,214}, {32,21,143}, {14,4321},
{21,14,432}, {43,3214}, {32,2143}, {21,1432}, {143,321}, {432,
214}, {14,43,32,21}}, respectively.

The cross-product of sets in M cw and M ccw (each of size
11) is equal to the set M (of size 121) for the original MIS
formulation above.

1

2

33

4

1

4

1

2

3

Partition 1Partition 0

Core partition

Fig. 2. (Color online) MISD-4 path set partitions in a four-node ring
network.

Fig. 3. Path graph Gcw
p for clockwise paths in a four-node ring

network.

MISD-4 Formulation. The MISD-4 algorithm partitions the
clockwise paths into two independent sets and a core set as in
Fig. 2:

• P cw,0 = {34,41,341}: the set of paths that use only the first
two clockwise links, links 34 and 41, shown as partition 0 in
Fig. 2.

• P cw,1 = {12,23,123}: the set of paths that use only the other
two clockwise links, links 12 and 23, shown as partition 1 in
Fig. 2.

• P cw,core = {412,231,1234,2341,3412,4123}: the remaining
set of paths that use any of the four clockwise links, shown
as the core partition in Fig. 2.

The next step is to include the paths into the path graph
Gcw

p , as shown in Fig. 3. No two paths in Gcw,0
p and Gcw,1

p
share a common link. Then, the set of core sets for the clockwise
paths, Qcw, is calculated in Gcw,core

p as follows:
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Fig. 4. Representation of MISs in Gcw
p by the MISs in Gcw,0

p and Gcw,1
p and core sets in Gcore

p .

• Initialize Qcw to the MIS set of Gcw,core
p : Qcw =

{{3412}, {2341}, {1234}, {4123}, {412,234}}.

• For q = {412,234}, path 234 intersects with path 123, but
path 412 does not intersect with path 123; hence, set {412}
is added to Qcw.

• For q = {412,234}, path 412 intersects with path 41, but
path 234 does not intersect with path 41; hence, set {234}
is added to Qcw.

• 0 is added to Qcw.

As a result, Qcw = {{3412}, {2341}, {1234},0, {412,234},
{412}, {234}}. Then, for each q ∈ Qcw, M

cw,0
q and M

cw,1
q are

obtained as in Fig. 4. Comparing with the set M cw obtained
above for MISD-2, we observe that, for each q ∈ Qcw, mi ∈
M

cw,0
q and m j ∈ M

cw,1
q , mi ∪ q∪m j is an MIS in graph Gcw

p
corresponding to set P cw. For instance, the top left part of
Fig. 4 shows that, for q1 = {3412}, Mcw,0

1 = 0 as q1 intersects

with links 34 and 41, while Mcw,1
1 = {23} as q1 intersects only

with link 12; the union of these three sets, i.e., {3412,23} is
an MIS for Gcw

p . The sets Qccw, M
ccw,0
q , and M

ccw,1
q are

similarly obtained for the counter-clockwise paths.

D. Comparison of the MIS and MISD-2x Formulations

In Fig. 5 we plot the number of independent sets in the basic
MIS formulation, as well as the MISD-2, MISD-4, and MISD-8
formulations, using a logarithmic y-axis, against the number
N of ring nodes. We observe that the number of independent
sets in MISD-2 is just the square root of the corresponding
number in the basic MIS formulation. This is due to the fact
that the path graph for a ring network is composed of two
disconnected subgraphs, and, as we observed earlier, |M | =
|Mcw| × |Mccw|. We also note that the MISD-4 and MISD-8

formulations achieve a further significant reduction in the
number of MISs. For instance, on a 16-node (respectively,
32-node) ring network, the number of MISs in MISD-8 is more
than one order (respectively, about four orders) of magnitude
smaller than in MISD-2. This decrease in MIS size comes at
the expense of additional constraints (i.e., those corresponding
to expression (18)), the number of which is equal to the
total number of core sets. However, the number of additional
constraints is low relative to the great reduction in the number
of independent sets. As an example, for a 16-node ring, the
number of core sets in the MISD-4 formulation is just 953. In
other words, by adding a small number of constraints, MISD
successfully eliminates a large number of variables in the
MILP formulation.

IV. NUMERICAL RESULTS

We now present numerical results in order to compare the
efficiency of the link, path, MIS, MISD-2, MISD-4, and MISD-8
formulations of the RWA problem. To this end, we used the
CPLEX 11 optimization software to solve the corresponding
formulations of identical problem instances on a cluster of
compute nodes with dual Woodcrest Xeon processors running
at 2.33 GHz with a 1333 MHz memory bus, 4 GB of memory,
and a 4 MB L2 cache.

In our comparisons, we used a large set of random problem
instances that were generated by varying the number N of
nodes in the ring network (N = 6,7, . . . ,24), the number W
of wavelengths per link (W = 10,20, . . . ,160), and the traffic
demands tsd (in lightpaths) between the members of the
various source–destination pairs (s,d) in the network. We also
imposed a time limit of 2 CPU hours for CPLEX to find a
solution for a given formulation and problem instance; if it
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Fig. 5. (Color online) Comparison of formulations in terms of MIS
decision variables.

failed to do so within the 2 h limit, we terminated the execution
run and report this fact in the figures shown in this section.

Figure 6 compares the various formulations of minRWA in
terms of the CPU time (on a log scale) that it takes for CPLEX
to find an optimal solution against the size N of the ring
network. Each data point in the figure represents the average
of 30 random instances generated by drawing traffic demands
(in lightpaths) uniformly at random in the interval [0,Tmax],
where Tmax is the maximum traffic demand. Figure 6(a)
presents results with Tmax = 3 while Fig. 6(b) shows results for
Tmax = 9. The data points in the light gray area of the figures
labeled “tLim” correspond to instances that could not be solved
within the 2 h time limit that we mentioned above. On the
other hand, the data points in the top dark gray area of the
figures labeled “Mem” correspond to instances for which the
formulation could not fit in the available memory for CPLEX
to run.

The results in Fig. 6(a) (Tmax = 3) indicate that the link
formulation fails to solve instances with N > 10 nodes within
the time limit. The path formulation is more efficient: CPLEX
is able to find the optimal solution for N ≤ 16, but the running
time exceeds the 2 h limit for all instances with N > 16. MIS
runs faster than the path and link formulations up to 8 and
10 nodes, respectively. However, the formulation size becomes
too large for CPLEX to solve beyond 10 nodes. The new MISD
formulations perform much better, with running times below
1 s up to 14–15 nodes (for MISD-4 and MISD-8), several orders
of magnitude less than those for the other three. Beyond 12
nodes, MISD-2 performs noticeably worse than MISD-4 and
MISD-8, and beyond 20 nodes its size becomes too large to
fit in memory; similarly, MISD-8 starts outperforming MISD-4
for networks with N ≥ 18 nodes. MISD-8 is able to obtain the
optimal solution for 24 nodes, 8 nodes more than for the path
formulation in about the same amount of time.

Let us turn our attention to Fig. 6(b), which compares the
various formulations for instances with Tmax = 9. Despite the
much larger traffic demand between the members of the node
pairs, the running times of the MISD formulations remain
almost the same, and MISD-8 is again able to solve up to
24-node networks within the imposed 2 h limit. On the other
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Fig. 6. (Color online) Solution times as a function of N.

hand, the running time of the path and link formulations
increase significantly compared to that for the same ring size
in Fig. 6(a), and the path formulation can no longer solve
16-node networks within the same time limit. This result is
due to the fact that, as the traffic load increases, a larger
number of wavelengths are needed to carry the traffic, which
in turn increases the number of variables in the link and
path formulations. On the other hand, the number of variables
in all MISD formulations is independent of the number of
wavelengths; hence their running times are not affected by
the traffic demands. This behavior is illustrated in Fig. 7,
which plots the running times of three MISD formulations,
against the maximum traffic demand Tmax, for 16-node rings.
Again, each data point in the figure represents the average
of 30 random instances generated by drawing traffic demands
(in lightpaths) uniformly at random in the interval [0,Tmax].
As we can see, the running time of the MISD formulations
remains almost constant across the range of traffic loads.

Figure 8 presents another set of experiments that we
performed to determine the maximum number of nodes in
a problem instance that can be solved by each formulation
for different values of the number W of wavelengths within
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be solved with each minRWA formulation for a given number W of
wavelengths, within 3000 s of CPU time.

3000 s. The problem instances were generated in the same
manner as those shown in Fig. 6(a). The dark gray area in
the figure denotes instances that are infeasible. Note that,
since the MIS and MISD-z formulations are independent of
W, the corresponding curves are straight lines parallel to the
x-axis; also, these formulations find optimal solutions even
when the problem is infeasible for the indicated number of
wavelengths (of course, the optimal solution in this case is
a value of W higher than the indicated one). As we can
see, among the MIS-based formulations, MISD-8 has the best
scalability (it can find solutions for N = 24 nodes), followed by
MISD-4 and MISD-2 (the latter can find solutions for N = 16
nodes, i.e., a maximum size SONET ring), while MIS can only
solve instances up to N = 10 nodes due to excessive memory
requirements. Within the 3000 s limit, the link formulation
can obtain solutions for up to N = 10–11 nodes for a moderate
number of wavelengths, but as W increases, it is limited to
small networks. Finally, the path formulation performs better
than the link formulation, but is also severely restricted as W
increases to the limits of current technology.

From a practical perspective, MISD-4 and MISD-8 make it
possible to solve RWA optimally for maximum size (16-node)
SONET rings in only a few (i.e., 2–3) seconds; importantly,
the running times are not sensitive to the traffic load. Such
instances can only be tackled using the path formulation, but,
depending on the traffic load, CPLEX may take several hours
or more, on average, to find the optimal solution. Consequently,
MISD-4 and MISD-8 allow network designers and operators
to perform extensive “what-if” analysis by investigating large
numbers of scenarios regarding forecast demands, cost and
price structures, etc.; such analysis would either not have
been possible previously or would require vast amounts of
computational resources and time.

V. CONCLUDING REMARKS

RWA is one of the most important problems arising in
the design of WDM networks, and it has been studied
extensively. However, existing formulations face significant
scalability challenges as the number of wavelengths supported
by optical transmission technology continues to increase. We
have developed an exact ILP formulation that is based on
recursive graph partitioning and has the advantage that its
size is independent of the number of wavelengths and the
traffic load. We have demonstrated that the new approach
enables the solution of problems in times that are several
orders of magnitude faster than conventional methods, making
it possible to solve network instances of practical size to
optimality. We are currently working to extend this work
in two directions: (1) develop efficient MISD techniques for
networks of general topology, and (2) investigate the impact
of these more efficient RWA formulations on the complexity
of other important network design problems, including traffic
grooming, which include RWA as a subproblem.

APPENDIX A: GENERALIZED MIS DECOMPOSITION

WITH 2x INDEPENDENT SETS: MISD-2x

Consider a ring network with N nodes. In such a network,
the MISD approach that we discussed in Section III can
be applied recursively up to z times, where z is the largest
integer such that 2z ≤ 2N. Recall that the first decomposition
(MISD-2) divides the link set of the ring network into
two directional rings, i.e., those consisting of the clockwise
and counter-clockwise links, respectively. Consider now the
clockwise directional ring; similar observations apply to the
counter-clockwise ring. The next decomposition (i.e., MISD-4)
divides the link set of the clockwise ring into two link sets
by bisecting the ring (e.g., in the north-to-south direction) to
create two half-rings; as a result, either the two link sets are of
equal size (if N is even) or their size differs by 1 (if N is odd).
Each subsequent decomposition divides the link sets from the
previous decomposition in the same manner. Consequently, for,
say, a 16-node ring, the fifth decomposition will result in 24 link
sets (for each directional ring) comprising a single link; hence
the constraint 2z ≤ N.
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Fig. 9. Path graph of MISD-2x.

Consider now the MISD-2x formulation, x ≤ z, and let
L k (k = cw, ccw) denote the link sets of the clockwise
and counter-clockwise rings, respectively. In effecting the xth
decomposition, each of these link sets is divided into 2x−1 sets:

L k,1, . . . ,L k,2x−1
. Accordingly, the path sets P k (k = cw, ccw)

are partitioned into 2x −1 sets following a tree topology with x
levels (refer to Fig. 9):

• P k,2x−1
, . . . ,P k,2x−1, the lowest levels of path partitions,

consist of paths containing only links within each link set
L k,s (s = 1, . . . ,2x−1);

• P k,2x−2
, . . . ,P k,2x−1−1, the second-lowest levels of path

partitions, include paths containing only links from the
two adjacent path partitions L k,2s−1 and L k,2s (s =
1, . . . ,2x−2);

• . . . ;

• P k,1, the highest level of path partitions, consists of paths
which use links from both half-rings; this corresponds to the
core partition in Fig. 2.

Figure 9 presents the path graph topology of the MISD-2x

approach (without loss of generality, only the clockwise
subgraph is presented). Gcw,s

p (s = 1, . . . ,2x−1) denotes the
subgraph corresponding to path set P cw,s. Two subgraphs are
connected with a dotted line if the paths in the two subgraphs
can share a common link. It is easily seen that all the

leaf subgraphs, Gk,2x−1

p , . . . ,Gk,2x−1
p , are mutually independent.

The only connections among the subgraphs are between the
child subgraphs and parent subgraphs. Therefore, an MIS
in Gcw

p can be represented by the union of core sets in the
parent subgraph and MISs in the child subgraph. Starting
from the root of the subgraph tree, an MIS mcw in Gcw

p is

represented by the union of an MIS mcw,2 in Gcw,2
p , a core

set qcw,1 in Gcw,1
p , and an MIS mcw,3 in Gcw,3

p , i.e., mcw =
mcw,2 ∪ qcw,1 ∪mcw,3. Recursively, the MIS mcw,2 is equal to

the union of mcw,4 in Gcw,4
p , core set qcw,2 in Gcw,2

p , and mcw,5

in Gcw,5
p , i.e., mcw,2 = mcw,4∪qcw,2∪mcw,5. Similarly, we have

that mcw,3 = mcw,6∪qcw,3∪mcw,7. As shown in Fig. 10, these
substitutions result in mcw = (mcw,4∪ qcw,2∪mcw,5)∪ qcw,1∪

(mcw,6 ∪ qcw,3 ∪ mcw,7). This substitution process continues
recursively until it reaches the leaf subgraph in the path graph
tree. Therefore, an MIS in Gcw

p will be represented by the
union of MISs in the leaf subgraphs and core sets in non-leaf

subgraphs, i.e., mk =⋃2x−1−1
s=1 qk,s

⋃2x−1
s′=2x−1 mk,s′ (k = cw, ccw).

To describe the exact MISD-2x formulation we introduce
additional notation. We define qk,r as the core sets in the

non-leaf subgraph Gk,r
p (k = cw, ccw, r = 1, . . . ,2x−1 − 1)

and define mk,r as MISs in the leaf subgraph Gk,r
p , (k =

cw, ccw, r = 2x−1, . . . ,2x −1). To include the network topology
in the formulation, we define X

qk,r
i j,k as a binary variable that

indicates whether pi j,k ∈ qk,r and define X
mk,r
i j,k as a binary

variable that indicates whether pi j,k ∈ mk,r . We also let M
qk,r
k,r′

be the set of MISs in the leaf subgraph Gk,r′
p that corresponds

to core set qk,r and let Q
qk,r
k,r′ be the set of core sets in the

non-leaf subgraph Gk,r′
p that corresponds to core set qk,r .

The two sets of decision variables in the formulation are

• Vqk,r : number of wavelengths assigned to core set qk,r ; and

• Vmk,r : number of wavelengths assigned to MIS mk,r .

The MISD-2x formulation can now be obtained by replac-
ing expressions (11) and (12) in the basic MIS formulation
with constraints (19) to (24). Expressions (19) to (21) are
x sets of constraints making sure that a sufficient number
of wavelengths is assigned to each path in different path
subgraphs and are a generalization of constraints (15) and (16)
in the MISD-4 formulation. Specifically, constraint (19)
accounts for paths in the top level subgraph, constraint (20)
accounts for paths in the second-level subgraphs, etc., and
finally constraint (21) accounts for paths in the leaf subgraphs.
Expressions (22) to (23) are x − 1 sets of constraints used
to ensure consistency between wavelength assignments in
different subgraphs and are generalizations of constraints (18)
in the MISD-4 formulation. Finally, expression (24) sets V to
the number of wavelengths used and is equivalent to (17) in
the MISD-4 formulation:

bi j,k ≤ ∑
qk,1∈Qk,1

Vqk,1 X
qk,1
i j,k ∀pi j ∈Gk,1

p , k = cw, ccw, (19)

bi j,k ≤ ∑
qk,1∈Qk,1

∑
qk,r∈Q

qk,1
k,r

Vqk,r X
qk,r
i j,k

∀pi j ∈Gk,r
p , k = cw, ccw r = 2,3, (20)

. . . . . .

bi j,k ≤ ∑
qk,1∈Qk,r1

∑
qk,r2∈Q

qk,1
k,r2

· · · ∑
qk,rs−1∈Q

qk,rs−2
k,rs−1

× ∑
mk,rs∈M

qk,rs−1
k,rs

Vmk,rs
X

mk,rs
i j,k ∀pi j,k ∈Gk,rs

p ,

s = x, 2x−1 ≤ rs ≤ 2x −1, rs−1 =
⌊ rs

2

⌋
,

rs−2 =
⌊ rk−1

2

⌋
, . . . , r1 =

⌊ r2

2

⌋
= 1, k = cw, ccw, (21)∑

qk,r∈Q
qk,1
k,r

Vqk,r =Vqk,1 k = cw, ccw r = 2,3, (22)
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Fig. 10. MIS Representation in MISD-2x.

. . . . . .∑
mk,rs∈M

qk,rs−1
k,rs

Vmk,rs
=Vqk,rs−1

s = x, 2x−1 ≤ rs ≤ 2x −1, rs−1 =
⌊ rs

2

⌋
k = cw, ccw, (23)

V ≥ ∑
q∈Qk

vk,1
q k = cw, ccw. (24)

REFERENCES

[1] J. M. Simmons, Optical Network Design and Planning. Springer,
2008.

[2] R. Dutta, A. E. Kamal, and G. N. Rouskas, Eds., Traffic Grooming
in Optical Networks: Foundations, Techniques, and Frontiers.
Springer, 2008.

[3] R. Dutta and G. N. Rouskas, “Traffic grooming in WDM net-
works: past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56,
Nov./Dec. 2002.

[4] K. Zhu and B. Mukherjee, “Traffic grooming in an optical WDM
mesh network,” IEEE J. Sel. Areas Commun., vol. 20, no. 1,
pp. 122–133, Jan. 2002.

[5] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Surviv-
able WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 4,
pp. 870–883, Apr. 2003.

[6] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh
networks, part I—protection,” in Proc. of INFOCOM ’99, Mar.
1999, pp. 744–751.

[7] J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, and R. Douville,
“A review of routing and wavelength assignment of scheduled
lightpath demands,” IEEE J. Sel. Areas Commun., vol. 21, no. 8,
pp. 1231–1240, Oct. 2003.

[8] W. Su and G. Sasaki, “Scheduling periodic transfers with flexibil-
ity,” in Proc. of 41st Allerton Conf., Oct. 2003.

[9] B. Jaumard, C. Meyer, and B. Thiongane, “ILP formulations
and optimal solutions for the RWA problem,” in Proc. of IEEE
GLOBECOM’04, Nov. 29–Dec. 3 2004, vol. 3, pp. 1918–1924.

[10] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications:
an approach to high bandwidth optical WANS,” IEEE Trans.
Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.

[11] R. Dutta and G. N. Rouskas, “A survey of virtual topology
design algorithms for wavelength routed optical networks,” Opt.
Networks Mag., vol. 1, no. 1, pp. 73–89, Jan. 2000.

[12] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing
and wavelength assignment approaches for wavelength-routed
optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1,
pp. 47–60, Jan. 2000.

[13] R. M. Krishnaswamy and K. N. Sivarajan, “Algorithms for
routing and wavelength assignment based on solutions of
LP-relaxations,” IEEE Commun. Lett., vol. 5, no. 10, pp. 435–437,
Oct. 2001.

[14] R. Ramaswami and K. Sivarajan, “Routing and wavelength
assignment in all-optical networks,” IEEE/ACM Trans. Netw.,
vol. 3, no. 5, pp. 489–500, Oct. 1995.

[15] A. Mehrotra and M. Trick, “A column generation approach for
graph coloring,” INFORMS J. Comput., vol. 8, no. 4, pp. 344–354,
1996.

[16] T. Lee, K. Lee, and S. Park, “Optimal routing and wavelength as-
signment in WDM ring networks,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 10, pp. 2146–2154, Oct. 2000.

[17] B. Jaumard, C. Meyer, and B. Thiongane, “On column genera-
tion formulations for the RWA problem,” Discrete Appl. Math.,
vol. 157, no. 6, pp. 1291–1308, Mar. 2009.

[18] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577,
Sept. 1973.


