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Generalized Wavelength Sharing Policies for
Absolute QoS Guarantees in OBS Networks

Li Yang and George N. Rouskas,Senior Member, IEEE

Abstract— We consider the problem of supporting absolute
QoS guarantees in terms of the end-to-end burst loss in OBS
networks. We present a parameterized model for wavelength
sharing which provides for isolation among different traffic
classes while also making efficient use of wavelength capacity
through statistical multiplexing. We develop a heuristic to opti-
mize the policy parameters for a single link of an OBS network.
We also develop a methodology for translating the end-to-end
QoS requirements into appropriate per-link parameters so as
to provide network-wide guarantees. Our approach is easy to
implement, it can support a wide variety of traffic classes, and is
effective in meeting the QoS requirements and keeping the loss
rate of best-effort and overall traffic low.

Index Terms— Optical burst switching, wavelength division
multiplexing, resource sharing policies, quality of service.

I. I NTRODUCTION

OPTICAL burst switching (OBS) [13] is a promising
switching paradigm which aspires to provide a flexible

infrastructure for carrying future Internet traffic in an effective
yet practical manner. OBS separates the control (signaling)
and data plane functions in the network in a way that exploits
the distinct advantages of optical and electronic technologies.
Signaling messages are processed electronically at every node
in the network, while bursts are transmitted transparently end-
to-end, without OEO conversion at intermediate nodes. OBS
transport is positioned between wavelength routing and optical
packet switching. The transmission of each burst is preceded
by the transmission of a setup message [1], whose purpose is
to reserve switching resources along the path for the upcoming
data burst. An OBS source node does not wait for confirmation
that an end-to-end connection has been set-up; instead it starts
transmitting a data burst after a delay (referred to as “offset”),
following the transmission of the setup message.

As OBS is becoming more widely accepted as a poten-
tial transport technology, supporting end-to-end quality of
service (QoS) guarantees in OBS networks is arising as an
important yet challenging issue. In general, there are two
approaches to providing QoS guarantees [15]. In therelative
QoSmodel, the service guarantees promised by the network
provider to a given class of traffic are specified relative to
the service guarantees of another class of traffic. Under the
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absolute QoS model, on the other hand, each priority class is
guaranteed a worst-case service level (e.g, in terms of burst
loss) that is independent of the service levels provided to
other classes. Most of the recent research in this area has
focused on relative service differentiation, and a variety of
schemes have been proposed, such as assigning an additional
offset to higher priority bursts [14], intentionally dropping
non-compliant bursts [2], and allowing in-profile bursts to
preempt out-of-profile ones [10]. A study of absolute QoS
guarantees in OBS networks can be found in [15], where
two mechanisms were proposed to enforce a loss probability
threshold for guaranteed traffic while reducing the loss rate
of non-guaranteed traffic: an early dropping mechanism to
selectively drop non-guaranteed traffic, and a wavelength
grouping strategy to allocate wavelengths to priority traffic.
Finally, the study in [9] differs from the above in that it
considers delay, rather than burst drop probability, as the QoS
parameter to be guaranteed.

In this paper we develop a general framework for absolute
service guarantees to users of an OBS network in terms
of the end-to-end burst loss. Inspired by earlier work on
resource sharing [5], [6], we first present a parameterized
model for wavelength sharing among traffic classes that can
provide a desired degree of isolation while taking advantage
of statistical multiplexing gains. Then, considering a single
OBS link, we develop a heuristic for optimizing the policy
parameters to support per-link absolute QoS guarantees for a
given set of heterogeneous traffic classes. Finally, we develop a
methodology for translating the end-to-end QoS requirements
into appropriate per-link parameters so as to provide network-
wide guarantees. Our approach is easy to implement, it can
support a wide variety of traffic classes, and is effective in
meeting the QoS requirements and keeping the loss rate of
best-effort traffic low.

The paper is organized as follows. In Section II, we discuss
the assumptions regarding the OBS network we consider in
this study. In Section III we present a suite of parameterized
wavelength sharing policies, and in Section IV we develop an
algorithm for optimizing the policy parameters for a single
OBS link. In Section V we extend our model to an OBS net-
work and introduce an algorithm for determining near-optimal
link policy parameters from the end-to-end QoS requirements,
traffic statistics, and network properties. We present numerical
results to validate our approach in Section VI, and we conclude
the paper in Section VII.

II. T HE OBS NETWORK UNDER STUDY

We consider an OBS network withN nodes. Each link
in the network can carry burst traffic on any wavelength
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from a fixed set ofW wavelengths,{λ1, λ2, · · · , λW }. We
assume that each OBS node is capable of full wavelength
conversion, hence an incoming burst can be forwarded on
any wavelength available at its output port regardless of the
wavelength on which it arrived. The network does not use
any other contention resolution mechanism. Specifically, OBS
nodes do not employ any buffering, either electronic or optical,
in the data path, and they do not utilize deflection routing or
burst segmentation. Therefore, if a burst requires an output
port at a time when all wavelengths of that port are busy
transmitting other bursts, then the burst is dropped.

The network supportsP classes of traffic, whereP is a
small integer. Once assembled at the edge of the network, a
burst is assigned to one of theP classes; the mechanism for
assigning bursts to traffic classes is outside the scope of our
work. The class to which a burst belongs is recorded in the
setup (control) message that precedes the burst transmission.
We assume that intermediate nodes make forwarding decisions
by taking into account both the availability of resources (e.g.,
the number of free wavelengths at an output port) and the
information regarding the class of a burst. Specifically, an
intermediate node may drop a burst of a lower priority class
even when there are wavelengths available at its outgoing
link. In the next section, we describe a set of policies that
intermediate nodes follow when forwarding bursts.

Each traffic classi, i = 1, · · · , P − 1, is characterized by
a worst-caseend-to-endloss guaranteeBe2e

i . ParameterBe2e
i

represents the long-run fraction of bursts from classi that
are dropped by the network before reaching their destination.
Without loss of generality, we assume that bursts of classi
have more stringent loss requirements than bursts of classj,
when i < j; in other words:

Be2e
i < Be2e

j , 1 ≤ i < j ≤ P (1)

Bursts of classP are not associated with any worst-case loss
guarantee; consequently, we will refer to classP as thebest-
effort class, and, for convenience, we will setBe2e

P = 1.0.
The objective of the network provider, and the one we

consider in this work, is to:

ensure that the loss rate of classi, i = 1, · · · , P −1,
does not exceed its worst-case loss guaranteeBe2e

i ,
while at the same time minimizing the loss rate of
the best-effort classP .

In order to achieve this objective, the network nodes need
to employ appropriately designed mechanisms to allocate
wavelength resources to bursts of each class based on its
load and worst-case loss requirement. In the following, we
develop a suite of wavelength sharing policies and evaluate
their performance.

III. WAVELENGTH SHARING POLICIES:
THE SINGLE L INK CASE

In this section we consider a single link of an OBS network,
and we present a set of policies to support different classes of
traffic sharing the wavelength resources of the link. The tech-
niques we propose allow for (limited) resource sharing among
classes, but also offer each class varying degrees of protection
from other classes. The ideas underlying our policies arise

naturally in practice, and have been considered before: in the
specific setting of memory allocation in network nodes [6], and
in the more general context of resource sharing [5]. Our main
contribution in this section is to develop analytical methods
to calculate the burst loss probability for the various traffic
classes under each policy. The analytical methods are the first
step towards the design of effective mechanisms to provide
absolute end-to-end QoS guarantees in OBS networks, a task
we undertake in the following two sections.

We assume that the (unidirectional) OBS link under study
consists ofW parallel wavelengths, and carriesP classes of
bursts. The policies we consider manage the wavelength space
by associating with each traffic class a pair of values that
impose bounds on the use of the link’s transmission resources
by the class:

• Wmax
i , referred to aswavelength upper bound for class

i, is the maximum number of wavelengths that may be
occupied simultaneously by bursts of classi. Setting
Wmax

i < W ensures that classi bursts will not consume
all available wavelengths at any given time, thus provid-
ing a form of protection to other traffic classes from class
i.

• Wmin
i , referred to aswavelength lower bound for class

i, is the minimum number of wavelengths set aside
(reserved) by the link for classi bursts. Whenever
Wmin

i > 0, the lower bound guarantees that there is
always space for a specified number of bursts from class
i, in essence protecting this class in case other classes
experience (transient or permanent) overload.

By specifying values for the pair of bounds(Wmin
i ,Wmax

i )
for each traffic classi, a policy may strike any desired balance
between two conflicting objectives:QoS protection, through
class separation, andefficient utilization, through sharing of
wavelength resources.

We note that acomplete wavelength sharingpolicy dictates
that:

Wmin
i = 0, Wmax

i = W, i = 1, · · · , P (2)

Such a policy offers no protection, and cannot provide any
differentiation among bursts with respect to loss guarantees.
Therefore, we do not consider this policy in our work.

In the following subsections, we present a broad class of
policies as determined by the range of values that the lower
and upper bounds,Wmin

i andWmax
i , respectively, are allowed

to take. We also present analytical models for computing the
burst loss probability for each policy, assuming that the pair of
values(Wmin

i ,Wmax
i ) for each classi are known in advance;

how to determine these values so as to achieve the objective
stated in Section II is the subject of Section IV. The analytical
models are derived based on the assumption that traffic class
i, i = 1, · · · , P , is characterized by a Poisson arrival rateλi,
and mean holding timeµi. We also letρi = λi/µi denote the
offered load of classi to the link.

A. The Wavelength Partitioning (WP) Policy

The wavelength partitioning (WP) policy partitions the
wavelength space such that each of theP traffic classes has
dedicated access to a subset of theW wavelengths. More
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specifically, the wavelength bounds for the traffic classes are
defined as:

0 < Wmin
i = Wmax

i = Wi < W, i = 1, · · · , P (3)

with the additional constraint that the sum of the number of
wavelength dedicated to each class must equal to the number
of available wavelengths:

P∑

i=1

Wi = W (4)

More specifically, bursts arriving at a link following the WP
policy are handled as follows:

when a class-i burst arrives, if the numberni of
wavelengths busy with class-i bursts is less than
Wi, the burst is transmitted on any free wavelength;
otherwise, it is simply dropped.

Clearly, the WP policy and the complete sharing policy defined
by expression (2) are at the opposite ends of the spectrum of
possible wavelength sharing policies.

The WP policy was considered earlier in the context of
OBS networks in [15], where it was referred to as dynamic
wavelength grouping (DWG). We adopt it here as a baseline
policy against which to compare the policies we present
next. A link using the WP policy operates asP independent
M/M/m/m queueing systems, one per traffic class. The drop
probability Bi for class-i bursts can be computed using the
well-known Erlang-B formula for anM/M/m/m system:

Bi =
ρi

Wi/Wi!∑Wi

j=0 ρi
j/j!

(5)

WP is easy to implement, as at any timet, one only
needs to keep track of the number of wavelengths occupied
by bursts of each class. Its main drawback is the lack of
statistical multiplexing of bursts from different classes, which
can lead to a substantial increase in the number of wavelengths
required to guarantee a given level of QoS for each class. As
suggested in [6], the performance of complete partitioning can
be improved if some sharing of resources is introduced. Next,
we describe a class of policies which provide different levels
of wavelength sharing among the various traffic classes.

B. The Class of Generalized Wavelength Sharing (GWS) Poli-
cies

A policy within the family of generalized wavelength shar-
ing (GWS) policies reserves a numberWmin

i wavelengths to
be used exclusively by classi, but it also restricts the number
of wavelengths that can be occupied simultaneously by class-i
bursts toWmax

i . The wavelength lower and upper bounds for
each class are defined as:

0 ≤ Wmin
i < Wmax

i ≤ W, i = 1, · · · , P. (6)

To allow for wavelength sharing, the sum of wavelength lower
bounds over all traffic classes must be less than the total
number of wavelengthsW , while the sum of the wavelength
upper bounds must exceedW ; in other words, the following

constraints are imposed on the wavelength lower and upper
bounds:

P∑

i=1

Wmin
i < W (7)

and
P∑

i=1

Wmax
i > W. (8)

More formally, the operation of a GWS policy can be
described as follows:

when a class-i burst arrives to find the link at state
P (n) = (n1, · · · , nP ), it is transmitted on any free
wavelength if the numberni of wavelengths busy
with class-i bursts is less than the maximum number
of wavelengths that classi may use at that time:

ni < min



Wmax

i , W −
∑

k 6=i

max
{
nk,Wmin

k

}


 (9)

Otherwise, the burst is dropped.

To obtain the burst drop probability under the GWS policy,
we observe that the state of the OBS link can be described
by the vectorn = (n1, · · · , nP ), whereni is a nonnegative
random variable denoting the number of class-i bursts. The
Markovian process describing the evolution of the OBS link is
a truncated process of theP independentM/M/m/m queues.
Specifically, the set of feasible statesS of the truncated
process can be described as:

S =
{

n | 0 ≤ ∑P
i=1 max

{
Wmin

i , ni

} ≤ W,
0 ≤ ni ≤ Wmax

i , i = 1, · · · , P
}

(10)

Then, the steady state probability of the truncated process has
the following product form [8]:

P (n) = P (n1, n2, · · · , nP ) =

{
C

ρ
n1
1

n1!

ρ
n2
2

n2!
· · · ρ

nP
P

nP ! , n ∈ S

0, n /∈ S
(11)

whereC is the normalizing constant representing the proba-
bility that the OBS link is idle (that is,C = P (0)).

The normalizing constantC can be computed as:

C−1 =
∑

n∈S

ρn1
1

n1!
ρn2
2

n2!
· · · ρ

nP

P

nP !
(12)

Since the cardinality of the state spaceS is almostO(WP ) [7],
a brute force calculation ofC−1 is computationally expensive
for links with a large number of wavelengths and/or traffic
classes.

An effective algorithm for calculating the normalizing con-
stant (and, consequently, the steady-state blocking probabil-
ities) for a class of resource-sharing models was proposed
in [3]. This algorithm is based on the numerical inversion
approach introduced in [4]. In this work, we adopt the direct
method in [3], which is appropriate for the system sizes we
consider, and we calculate the normalizing constant via the
P -fold nested sum:

C−1 =
K1∑

n1=0

ρn1
1

n1!

K2∑
n2=0

ρn2
2

n2!
· · ·

KP∑
nP =0

ρnP

P

nP !
(13)
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The P upper limits Ki, i = 1, · · · , P , in the above sum-
mation are not independent; their value depends on both
the wavelength upper and lower boundsWmax

i and Wmin
i ,

respectively, and the values of parametersnk, k = 1, · · · , i−1,
in expression (13), as follows:

Ki = min {Wmax
i ,

W −
i−1∑

k=1

max
{
nk,Wmin

k

}−
P∑

k=i+1

Wmin
k

}
(14)

Note that the above expression is slightly different than (9).
In the latter expression, the values of all parametersni are
considered fixed at the time of a burst arrival that finds the
system at stateP (n) = P (n1, n2, · · · , nP ). On the other hand,
when enumerating all terms of the nested sum (13) for variable
ni, only the values of parametersn1, · · · , ni−1 are considered
fixed; hence, the value ofni can be constrained only by the
lower boundsWmin

k of parametersni+1, · · · , nP , as shown in
the rightmost term of expression (14).

We observe that the probability that a class-i burst would
be dropped at an arbitrary time is equal to one minus the
probability that classi can be allocated one wavelength at
that time. Let us useC−1(W,Wmin,Wmax) to denote the
inverse of the normalizing constant for an OBS link with
W wavelengths and vectors of lower and upper wavelength
boundsWmin and Wmax, respectively. Also, let1i denote
a P -element vector with all elements equal to zero, except
the element at positioni which is equal to one. Then, the
probability that a class-i burst will be dropped at an arbitrary
time can be represented as:

Bi = 1− C−1(W − 1,Wmin − 1i,W
max − 1i)

C−1(W,Wmin,Wmax)
(15)

Due to the Poisson arrival assumption, expression (15) also
represents the probability that an arriving class-i burst will be
dropped.

IV. POLICY OPTIMIZATION

In the previous section, we presented a suite of wavelength
sharing policies for a single OBS link withP, P > 1, traffic
classes. We also showed how to compute the burst drop
probability for each classi, i = 1, · · · , P , as a function of the
offered loadsρi and the wavelength lower and upper bounds
Wmin

i andWmax
i , respectively. In this section, we present a

method for selecting the wavelength lower and upper bounds
for the guaranteed traffic classes so as to keep the burst drop
probabilities below a desired threshold. In other words, our
goal is to control the level of resource sharing at the link
level in a near-optimal manner in order to achieve absolute
QoS differentiation among the traffic classes.

A. The Policy Optimization Problem

As we discussed earlier, we consider an OBS link with
W wavelengths andP classes of traffic. Each traffic class
i, i = 1, · · · , P , is characterized by a worst-caselink (or one-
hop) loss guaranteeB`

i , which corresponds to the fraction of
bursts from classi that are dropped by the link in the long run.

We defer to the next section the issue of translating the end-to-
end loss guaranteesBe2e

i to appropriate link loss guarantees
B`

i . Without loss of generality, we again assume that classi
has stricter QoS requirements than classj > i:

B`
i < B`

j , 1 ≤ i < j ≤ P (16)

Traffic classP , the best-effort class, has no associated worst-
case loss guarantee, and we letB`

P = 1.0.
Under the WP policy, the OBS link reservesWi(= Wmin

i =
Wmax

i ) wavelengths for the exclusive use of class-i bursts.
Let Erl−1(ρ,B) denote the inverse Erlang-B formula, which
returns the number of wavelengths required for the burst drop
probability not to exceedB, when the offered load is equal
to ρ. We emphasize that the use of the Erlang-B formula for
the burst drop probability is only an approximation, albeit one
commonly used in the literature. As it was pointed out in [15],
each guaranteed classi must be allocatedWi wavelengths such
that:

Wi = Erl−1(ρi, B
`
i ), i = 1, · · · , P − 1 (17)

As long as the total number of reserved wavelengths,Wres =∑P−1
i=1 Wi, is less than the total numberW of wavelengths

available at the link, the best-effort class, classP , will use
the remaining unreserved wavelengths. If, on the other hand,
Wres ≥ W , then it is not feasible to carry the offered traffic
mix with the given link capacity using the WP policy. In
this case, it may still be possible to meet the QoS require-
ments of the guaranteed classes and also carry the best-effort
class without additional capacity, by exploiting the statistical
multiplexing gains achievable by the generalized wavelength
sharing (GWS) policies.

Let us assume that the OBS link operates under a GWS
policy. Let ρi and B`

i be the offered load and link loss
guarantee, respectively, of traffic classi, i = 1, · · · , P (with
B`

P = 1.0). Our objective is to determine the optimal pair
of wavelength bounds(Wmin

i ,Wmax
i ) for each class so as

to minimize the burst loss probabilityBP of the best-effort
traffic while keeping the burst loss probabilityBi of each
guaranteed classi, i = 1, · · · , P −1 belowB`

i . More formally,
this optimization problem can be stated as:
minimize: Bp

subject to:

Bi ≤ B`
i , i = 1, · · · , P − 1 (18)

0 ≤ Wmin
i ≤ Wmax

i ≤ W, i = 1, · · · , P (19)

Wmin
i , Wmax

i : integer, i = 1, · · · , P (20)

and the constraints (7) and (8); the burst drop probabilities
Bi, i = 1, · · · , P , are obtained from expression (15).

Clearly, the above is an integer optimization problem
with a nonlinear objective function and nonlinear con-
straints (18). Furthermore, important mathematical properties
such as monotonicity and convexity have not been established
for this type of objective function [5]. Since existing optimiza-
tion tools (e.g., CPLEX) are not appropriate for this problem
and an exhaustive search of the entire space of candidate
solutions is computationally prohibitive, in the following sub-
section we develop a greedy local search heuristic to obtain a
near-optimal solution to this optimization problem.



SUPPLEMENT ON OPTICAL COMMUNICATIONS AND NETWORKING 5

B. The Local Search Heuristic

The main idea of our greedy heuristic is to attempt to
decrease the value of the objective function (i.e., the burst drop
probability of the best-effort classP ), by slightly increasing
at each iteration the burst drop probability of one of the
guaranteed classes, say, classi, i = 1, · · · , P − 1. However,
the algorithm ensures that at the end of the iteration, the burst
loss guarantee of classi will not be violated. The algorithm
manipulates the values of the burst drop probabilities by
adjusting the wavelength lower and upper bounds of classes
i and P at each iteration. For the selected guaranteed class
i, in particular, the algorithm attempts to increase its burst
drop probability by searching in directions which (1) reduce
classi’s maximum usage of wavelengths, (2) reduce classi’s
minimum allocation of wavelengths, or both.

More specifically, our heuristic works as follows. Let
(Wmin

i (k),Wmax
i (k)) denote the pair of wavelength lower

and upper bounds for classi, i = 1, · · · , P , at the end of
iteration k, k = 0, 1, 2, · · ·. Let alsoBi(k) denote the burst
drop probability of classi at the end of thek-th iteration,
as computed by expression (15). At the start of the(k + 1)-
th iteration, the algorithm computes the ratioBi(k)

B`
i

for each
guaranteed classi, i = 1, · · · , P − 1. This ratio is a measure
of how close the long-term burst drop probability of a class
is to its link loss guarantee. Letm be the class for which
Bm(k)

B`
m

is minimum among all guaranteed classes. Note that
the constraint in (18) corresponding to classm has the largest
relative slack among all such constraints. In the current (i.e.,
(k+1)-th) iteration, the algorithm will modify the wavelength
lower and upper bounds of classesm andP in an attempt to
lower the burst drop probabilityBP (k + 1) of the best-effort
class at the expense of class-m bursts which may experience
a higher drop probabilityBm(k + 1) (the latter, however, is
not allowed to exceedB`

m). The algorithm does not modify
the wavelength lower and upper bounds of any other class
during the current iteration. Note also that the criterion by
which classm is selected at the beginning of each iteration
reflects the greedy nature of the heuristic.

Let us now describe how the algorithm attempts to increase
the burst drop probability of guaranteed classm that was
selected at the beginning of the(k + 1)-th iteration. Let
(Wmin

m (k),Wmax
m (k)) be the pair of wavelength lower and

upper bounds for this class at the end of thek-th iteration.
At the end of the(k + 1)-th iteration, the algorithm will
determine new bounds(Wmin

m (k + 1),Wmax
m (k + 1)) for

this class. In order to bound the computational requirements
of each iteration, the heuristic limits the set of candidate
values for(Wmin

m (k + 1),Wmax
m (k + 1)) that it considers to

a small neighborhood around(Wmin
m (k),Wmax

m (k)); this is
the “local search” feature of the algorithm. Specifically, the
local neighborhood examined during the(k + 1)-th iteration
is defined consistent with the search directions we outlined
earlier as in expression (21), shown at the top of the next
page. As a result of this definition of the local neighborhood,
the wavelength lower and upper bounds of classm will not be
adjusted by more than one unit (up or down) at any iteration,
preventing large changes in the burst drop probabilities from
one iteration to the next.

GWS Policy Optimization for an OBS Link
Input: An OBS link with W wavelengths,P traffic classes,
offered loadρi and burst loss guaranteeB`

i , i = 1, · · · , P
(B`

P = 1.0)
Output: Pair of wavelength lower and upper bounds
(Wmin

i ,Wmax
i ), i = 1, · · · , P , such thatBi ≤ B`

i , i =
1, · · · , P − 1, andBP is minimized

procedurePolicyOpt
begin
1. k ← 0 // iteration index
2. for i = 1 to P − 1 do // initialization
3. Wmin

i (k) ← Erl−1(ρi, B
`
i );

4. Wmax
i (k) ← min{2Wmin

i (k),W}
5. (Wmin

P (k),Wmax
P (k)) ← pair of values that minimizes

BP (0) without violating constraints (18)
6. repeat // main iteration
7. k ← k + 1
8. Let m be the class with the minimum value of

Bi(k−1)

B`
i

, i = 1, · · · , P − 1
9. L(k) ← the local neighborhood from expression (21)
10. B ← 1.0 // temporary variable

// update the wavelength bounds of classesm andP
11. for each (wmin

m , wmax
m ) ∈ L(k) do

12. (wmin
P , wmax

P ) ← pair of values that minimizesBP

without violating constraints (18)
13. if BP < B then
14. Wmim

m (k + 1) ← wmin
m ; Wmax

m (k + 1) ← wmax
m

Wmin
P (k + 1) ← wmin

P ; Wmax
P (k + 1) ← wmax

P

// wavelength bounds of other classes remain the same
15. for i = 1 to P − 1, i 6= m do
16. Wmin

i (k + 1) ← Wmin
i (k)

Wmax
i (k + 1) ← Wmax

i (k)
17. until BP cannot be decreased any further
18. if

∑P−1
i=1 Wmin

i ≥ W then
19. return error // cannot meet QoS
20. else return (Wmin

i (k),Wmax
i (k)), i = 1, · · · , P

end

Fig. 1. Local search heuristic for GWS policy optimization

For each pair(wmin
m , wmax

m ) in the local neighborhood
set L(k + 1), and using the same wavelength lower and
upper bounds(Wmin

i (k),Wmax
i (k)) as at the end of the

the previous iteration for all guaranteed classesi 6= m,
we determine through expression (15) a pair of wavelength
lower and upper bounds(wmin

P , wmax
P ) for the best-effort class

that minimizes its burst drop probabilityBP and does not
violate any of the loss guarantees. Among these, we select the
pairs (wmin

m , wmax
m ) and (wmin

P , wmax
P ) corresponding to the

minimumBP as the values for(Wmin
i (k+1),Wmax

i (k+1))
and(Wmin

P (k +1),Wmax
P (k +1)), respectively. For all other

classes we letWmin
i (k+1) = Wmin

i (k) andWmax
i (k+1) =

Wmax
i (k), at the end of iterationk+1. We then proceed with

the next iteration in a similar manner. The algorithm terminates
when no improvement (reduction) in the value of the objective
function BP is possible.
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L(k + 1) =





{(Wmin
m (k),Wmax

m (k)− 1), (Wmin
m (k) + 1,Wmax

m (k)− 1)}, Wmin
m (k) = 0

{(Wmin
m (k)− 1,Wmax

m (k)− 1), (Wmin
m (k)− 1,Wmax

m (k)),
(Wmin

m (k),Wmax
m (k)− 1), (Wmin

m (k) + 1,Wmax
m (k)− 1),

(Wmin
m (k)− 1,Wmax

m (k) + 1)}, Wmin
m (k) > 0

(21)

To fully specify the algorithm, we need to determine ap-
propriate initial values for the wavelength lower and upper
bounds of each class. While it is possible to letWmin

i (0) = 0
and Wmax

i (0) = W for each classi, doing so has two
risks: it may require a large number of iterations for the
algorithm to converge, and it might cause the algorithm to get
trapped in a local minimum that is far away from the global
optimum. Therefore, we use the information regarding the loss
guaranteesB`

i , i = 1, · · · , P − 1, to start the algorithm from
a more appropriate initial solution. Specifically, letWi denote
the number of wavelengths returned by the inverse Erlang-B
formula (refer to expression (17)) for guaranteed classi. At
the beginning of the algorithm, for the guaranteed classes we
let:

Wmin
i (0) = Wi,W

max
i (0) = min{2Wi,W}, i = 1, · · · , P−1

(22)
while for the best-effort class we setWmin

P (0) andWmax
P (0)

to the pair of values that minimizesBP (0) while not violating
constraints (18).

A step-by-step description of the local search algorithm is
provided in Figure 1. If, at the end of the main iteration, the
sum of the wavelength lower bounds for theP −1 guaranteed
classes exceed the numberW of available wavelengths, then
the QoS requirements cannot be met. We also note that despite
the fact that, at each iteration, the algorithm proceeds in a
direction that has the potential to decrease the burst drop
probability of the best-effort class by increasing the corre-
sponding probability of one of the guaranteed classes, there
is no assurance that this approach will lead to a monotonic
behavior in the values of the burst drop probabilities. To see
this, observe that adjusting the wavelength lower and upper
bounds of one traffic class affects the degree of wavelength
sharing among classes, and consequently, has an effect on
the burst drop probability of all classes. Furthermore, this
effect is not known in advance, and can be quantified only by
applying expression (15) with the new bounds. Nevertheless,
our experimental results indicate that our algorithm converges
to a local optimum after only a few iterations.

V. WAVELENGTH SHARING POLICIES IN A NETWORK OF

OBS NODES

In this section, we consider an OBS network withP traffic
classes. In order to support absolute QoS guarantees, each
(unidirectional) link operates under a generalized wavelength
sharing (GWS) policy. Since it is typical for applications to
specify their QoS requirements in terms of an end-to-end burst
loss guarantee, we assume that each traffic classi is associated
with an end-to-end loss rate thresholdBe2e

i ; without loss of
generality, we let:

Be2e
1 < Be2e

2 < · · · < Be2e
P−1 < Be2e

P = 1.0 (23)

The main issue we address in this section is how to optimize
the parameters of the GWS policy (i.e., the wavelength lower
and upper bounds of each class) at each link, so that the
network will meet the end-to-end loss requirements of the
guaranteed classes while minimizing the burst loss probability
of the best-effort classP .

Consider any link of the network, and recall that in order to
apply the policy optimization algorithm in Figure 1 we need to
determine the link offered loadρi and link loss rate guarantee
B`

i for each classi. The offered loadρi can be determined
in several different ways. For instance, if the network uses
fixed routing and making the reasonable assumption that link
drop probabilities are relatively small, we can approximateρi

by summing the amount of class-i traffic offered by source-
destination pairs whose path uses this link. Alternatively, the
OBS node at the head of the link may periodically measure
the amount of class-i traffic passing through; assuming that
traffic variations take place over longer time scales, traffic
measurements will yield a fairly accurate estimate ofρi.

Let us now turn our attention to the problem of deter-
mining the per-link loss rate guaranteesB`

i from the end-to-
end guaranteesBe2e

i , i = 1, · · · , P − 1. Consider the burst
traffic between a certain source-destination pair and leth
denote the number of links (hops) in the path. Let us further
make the common assumption that link drop probabilities are
independent. In this case, we can guarantee that the end-to-
end loss requirement of traffic classBe2e

i for this source-
destination pair will be met by letting the loss thresholds at
each of theh links equal to:

B`
i (h) = 1− exp

(
ln(1−Be2e

i )
h

)
, i = 1, · · · , P − 1 (24)

Note, however, that a link may carry class-i traffic from several
source-destination pairs using paths of different lengths. Let
D denote the diameter of the network. One possible way of
dealing with this issue would be to subdivide class-i traffic into
D subclasses, where each subclassh corresponds to class-
i traffic traveling over anh-link path. While theoretically
possible, the computational requirements of such an approach
would be prohibitive in practice, due to the explosion in the
number of traffic classes involved in evaluating expression (15)
and the corresponding increase in the running time of the
policy optimization algorithm.

A simple solution to this problem was suggested in [15],
where it was proposed to set the loss guarantee at each link
to the valueB`

i (D) obtained by using the diameterD of the
network in place ofh in expression (24). This approach is
simple to implement and has the additional advantage that
the values ofB`

i are identical for all links of the network.
A limitation of this method is that by using the diameter
of the network in the above expression will result in over-
provisioning link resources to guaranteed classes. Conse-
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quently, the network resources may not be sufficient to meet
the QoS requirements of all classes, and/or the best-effort class
may suffer losses that are unnecessarily high [15]. To alleviate
the over-provisioning effect, it would be possible to partition
the network into clusters whose diameter does not exceed a
predefined threshold, and apply the above method to paths
within each cluster, as suggested in [15]. Maintaining multiple
clusters, on the other hand, requires the use of intelligent
partitioning techniques, increases complexity, and results in
different per-link loss thresholds for each class.

We now propose another approach which is relatively sim-
ple to implement and specifies the same loss rate requirement
B`

i at all links of the network. LetH̄ denote the average
number of hops, over all source-destination pairs, of a path
in the network, and letB`

i (H̄) be the corresponding value
of expression (24). Note that sincēH < D, then B`

i (H̄) >
B`

i (D). The first step in our approach is to check whether
letting B`

i (H̄) as the per-link loss rate guaranteeB`
i for class

i, i = 1, · · · , P is sufficient to meet the end-to-end QoS. To
this end, we compute the network-wide end-to-end burst loss
probability of class-i traffic as [11]:

Bi =
∑

l∈E B`
i × ρ

(l)
i∑

s,d ρ
(s,d)
i

, i = 1, · · · , P − 1 (25)

whereE is the set of links in the OBS network,ρ(l)
i is the

total load of class-i traffic offered to link l, andρ
(s,d)
i is the

class-i traffic load generated by source-destination pair(s, d).
If Bi < Be2e

i for all guaranteed classesi, we letB`
i = B`

i (H̄)
for all links in the network, and we stop: this value of per-
link loss guarantee is sufficient to meet the end-to-end QoS
requirements of all classes, as well as to ensure a low value
for the end-to-end loss rate of the best-effort classP .

If, on the other hand, there is some classi for which
Bi > Be2e

i , then we need to impose more stringent per-link
guarantees in order to meet the end-to-end QoS requirements.
We now observe that the feasible values of the per-link guar-
antee for classi are in the range[B`

i (D), B`
i (H̄)]. A natural

approach for searching this range of values is to perform a
binary search, where at each step we letB`

i , i = 1, · · · , P ,
be the midpointBmid

i = (Bmin
i + Bmax

i )/2 of the current
interval[Bmin

i , Bmax
i ], where initially we let[Bmin

i , Bmax
i ] =

[B`
i (D), B`

i (H̄)]. If, using expression (25), this valueBmid
i is

sufficient to meet the end-to-end QoS requirements, the search
continues in the interval[Bmid

i , Bmax
i ]; otherwise, it continues

in the interval [Bmin
i , Bmid

i ]. This binary search algorithm
repeats in this manner until the length of the search range
becomes sufficiently small, i.e., untilBmax

i ≤ Bmin
i ×ε, where

ε > 1 is a small constant. At that point, we let the per-link
loss guaranteeB`

i = Bmin
i , i = 1, · · · , P − 1.

The details of this binary search algorithm can be found in
Figure 2. Note that for comparisons involving vectors, if any
one element of the vector violates the comparison conditions,
then the vector itself is assumed to also violate them.

Let us now discuss the implementation aspects of the GWS
policy. Deployment of GWS involves two phases. In the off-
line phase, the upper and lower wavelength boundsWmin

i

andWmax
i , respectively, for each traffic classi, i = 1, · · · , P

are computed for a given network topology, traffic pattern,

Per-Link Loss Guarantee Optimization for an OBS Net-
work
Input: An OBS network with diameterD and average path
length H̄, P classes of traffic, and end-to-end loss guarantee
vectorBe2e = (Be2e

1 , · · · , Be2e
P−1)

Output: Per-link loss guarantee vectorB` = (B`
1, · · · , B`

P−1)
such that the end-to-end loss guarantees are met and the
end-to-end burst loss probability of the best-effort class is
minimized

procedureLinkGuaranteeOpt
begin
// initialize the search range using expression (24)
1. Bmin ← (B`

1(D), · · · , B`
P−1(D))

2. Bmax ← (B`
1(H̄), · · · , B`

P−1(H̄))
2. while Bmax > Bmin × ε do // binary search
3. Bmid ← (

Bmin + Bmax
)
/2

4. B ← (B1, · · · ,BP−1) from (25) with B` = Bmin

// attempt to increase the link guarantees to decreaseBP

5. if B < Be2e then
6. Bmin ← Bmid

7. else // must decrease the link guarantees
8. Bmax ← Bmid

9. end while
10.return Bmin

end

Fig. 2. Binary search algorithm for selecting the per-link loss guarantees

and end-to-end guarantees, using the techniques we described
in this work; we expect this computation to take place in a
centralized manner at a network control or management node.
Since we assume that the link loss guarantee of each traffic
class is the same on each link, the values ofWmin

i andWmax
i

only depend on the classi and are the same for all links.
Hence, the network links can be configured appropriately
by simply downloading this set of values to each network
node. We also expect that the control node will monitor the
traffic conditions and network topology and update the values
of Wmin

i and Wmax
i periodically to reflect any changes;

however, any such updates will take place at time scales
much longer (i.e., a few minutes or hours) compared to burst
transmissions. During the on-line phase, network nodes use the
configured values ofWmin

i andWmax
i to determine whether

an arriving burst can be accepted or not. This operation only
requires the nodes to keep track of the number of bursts from
each class currently served by the link. In particular, there is no
need to maintain any online traffic statistics, and the decision
to accept or reject a burst depends only on its traffic class
independently of the state of other classes. Hence, the GWS
policy is simple to implement in hardware and can be readily
deployed for further evaluation in a testbed environment.

VI. N UMERICAL RESULTS

A. Policy Optimization at a Single OBS Link

Let us first consider a single OBS link withW = 32
wavelengths andP = 3 classes of traffic. Classes 1 and 2
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Fig. 3. Single link withW = 32 wavelengths andP = 3 traffic classes,
ρ1 = 0.2ρ, ρ2 = 0.3ρ, ρ3 = 0.5ρ.

require a link loss guaranteeB`
1 = 10−3 and B`

2 = 10−2,
respectively. While there are no guarantees associated with
best-effort class 3, it is desirable to keep its burst drop
probability as low as possible provided that doing so does
not lead to a violation of the QoS requirements of the two
priority classes.

In this subsection, we compare two policies in terms of their
effectiveness in meeting the above objective:

1) The WP policy, described in Section III-A and also
considered in [15], reservesWi wavelengths for the
exclusive use of class-i bursts. For each guaranteed class
i, i = 1, 2, the numberWi of wavelengths is determined
by the inverse Erlang-B formula (17).

2) The GWS policy, described in Section III-B, which
associates a pair of wavelength lower and upper bounds
(Wmin

i ,Wmax
i ) with each traffic class. The values of

these bounds are obtained by running the policy opti-
mization algorithm in Figure 1.

Figure 3 plots the burst drop probability against the link
loadρ, in Erlang, for the three classes of traffic under the two
policies, WP and GWS; it also plots the average burst drop
probability over all three classes of traffic. For this figure, we
assume that class-1 (respectively, class-2) bursts represent 20%
(respectively, 30%) of the traffic, and the remaining traffic
is best-effort; in other words,ρ1 = 0.2ρ, ρ2 = 0.3ρ, and
ρ3 = 0.5ρ. As we can see, both policies ensure that the burst
loss rate for classes 1 and 2 is kept below the loss requirement
of 10−3 and10−2, respectively. On the other hand, the burst
loss for class 3 increases with the link loadρ, as expected. But
whereas class 3 burst loss under the WP policy is quite high
across all load values shown in the figure, under the GWS
policy, class 3 burst loss is one to two orders of magnitude
lower for low to moderate traffic loads; even at high loads,
the burst loss rate of best-effort traffic under the GWS policy
is one-half that under the WP policy. More importantly, the
GWS policy reduces the overall burst drop rate significantly,
with a corresponding substantial increase in throughput.

The above result can be explained by noting the two main
shortcomings of the WP policy. First, the policy does not
allow any statistical multiplexing: it partitions the available
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Fig. 4. Single link withW = 32 wavelengths andP = 3 traffic classes,
ρ1 = 4 Erlang,ρ2 = 6 Erlang.

link capacity into three sets of wavelengths, each dedicated
to carrying bursts in one of the three traffic classes. The
GWS policy, on the other hand, is much more flexible in
allocating the link capacity to the three traffic classes. Al-
though it does dedicate a number of wavelengths (equal to
the wavelength lower bound) to each of the two guaranteed
classes, it does allow for a certain degree (as determined by
the policy optimization algorithm in Figure 1) of wavelength
sharing among the three classes. The corresponding statistical
multiplexing gains contribute to a decrease in the burst loss
rate of best-effort, as well as overall, traffic. Hence, the GWS
policy is significantly more efficient and effective in utilizing
the available network resources than WP.

A second problem is that the WP policy allocates bandwidth
at the granularity of a whole wavelength; as a result, it often
over-provisions the guaranteed classes. This is evident from
the behavior of the burst loss curves for the guaranteed classes
under the WP policy in Figure 3. Consider, for instance,
class 1. As we can see, the burst loss initially increases with
the link load, but when the load goes from 21 to 21.5 Erlang,
the burst loss drops. This behavior is due to the fact that up
to 21 Erlang, the WP policy allocates a certain numberw
wavelengths to class 1 traffic, but at 21.5 Erlang it allocates
w + 1 wavelengths. In this case, the same numberw + 1
wavelengths are allocated for loads greater than 21.5 Erlang,
hence the burst loss for class 1 continues to increase after
the drop. Similar observations can be made for the burst loss
curve of class 2. The GWS policy, on the other hand, by virtue
of the wavelength sharing it allows, is able to allocate the
link capacity at a finer granularity than a whole wavelength.
Consequently, it “allocates” just enough capacity to each of
the guaranteed classes to meet their loss requirements. Observe
also that the burst loss for the guaranteed classes is generally
higher under the WS-MinMax policy than under WP. In
essence, the GWS policy reduces the loss rate of best-effort
traffic by increasing the loss rate of the guaranteed classes just
enough, so as not to violate the corresponding requirement.

For Figure 4, we fix the class 1 and class 2 load toρ1 = 4
Erlang andρ2 = 6 Erlang, respectively. The figure plots
the burst loss rate of all classes under the WP and GWS
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Fig. 5. Single link withW = 32 wavelengths andP = 3 traffic classes,
ρ3 = 11 Erlang,ρ2 = 1.5ρ1.

policies against the loadρ3 of the best-effort class, as the
latter varies from 10 to 16.5 Erlang. Since the load of the
guaranteed classes is constant, the WP policy allocates them
the same number of wavelength regardless of the load of best-
effort traffic; as a result, the burst loss of the two guaranteed
classes is the same under the WP policy across the range of
ρ3 values. The GWS policy, on the other hand, adjusts the
wavelength lower and upper bounds of the two guaranteed
classes depending on the value ofρ3, hence the behavior of the
corresponding burst loss curves is non-monotonic. As a result,
the GWS policy is able to reduce significantly the overall loss
rate, and that of the best-effort traffic, without violating the
loss requirements of the guaranteed classes.

Finally, in Figure 5 we fix the load of best-effort traffic to
ρ3 = 11 Erlang, and we also letρ2 = 1.5ρ1. The figure plots
the burst drop probability of the three classes under the WP
and GWS policies as the loadρ1 + ρ2 of guaranteed traffic
increases from 9 to 13 Erlang. Although the load of best-
effort traffic is constant, its burst loss increases as the amount
of guaranteed traffic increases, since both policies allocate
additional wavelengths to the guaranteed classes. However, we
again observe the significant improvement in the performance
of best-effort and overall traffic under the GWS policy.

B. End-to-End QoS Guarantees in an OBS Network

We now use simulation to demonstrate the effectiveness
of our wavelength sharing policies to provide end-to-end
guarantees. We use the simulator that was developed as part
of the Jumpstart project [12]. The simulator accounts for
all the details of the Jumpstart OBS signaling protocol [1]
which employs the Just-In-Time (JIT) reservation scheme.
(We emphasize, however, that the wavelength sharing policies
we present and evaluate in this work are independent of the
specifics of the reservation protocol, and can be deployed
alongside either the JET or the Horizon reservation schemes.)
We use the method of batch means to estimate the burst drop
probability, with each simulation run lasting until6 × 105

bursts have been transmitted in the entire network. We have
also obtained 95% confidence intervals for all our results;
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Fig. 6. The4× 4 torus network.
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Fig. 7. The 16-node topology based on the 14-node NSFNet.

however, they are so narrow that we omit them from the figures
we present in this section in order to improve readability.

In our study, we consider two 16-node networks: the4× 4
torus network shown in Figure 6 is based on a regular
topology, while the network in Figure 7 is based on an
irregular topology derived from the 14-node NSF network. We
assume shortest path routing, and we consider two different
traffic patterns:

• Uniform pattern: each switch generates the same traffic
load, and the traffic from a given switch is uniformly
distributed to other switches.

• Distance-dependent pattern:the amount of traffic be-
tween a pair of switches is inversely proportional to the
minimum number of hops between these two switches.

We again assume that each link carriesW = 32 wavelengths,
and there areP = 3 classes of traffic. Classes 1 and 2 require
an end-to-end loss guaranteeBe2e

1 = 10−3 andBe2e
2 = 10−2,

respectively; class 3 is the best-effort class and does not
require any loss guarantees. We also note that the diameter
of both the NSFNet and the torus networks is equal to 4,
while the average hop distance of the two networks, used in
the optimization algorithm in Figure 1, is̄HNSF = 2.283 and
H̄torus = 2.133.

In Figure 8, we plot the overall burst drop probability, as
well as that of the three classes of traffic, under the two
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Fig. 8. NSFNet,W = 32 wavelengths,P = 3 traffic classes, uniform
pattern,B`

i obtained from (24) withh = D.
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Fig. 9. Torus,W = 32 wavelengths,P = 3 traffic classes, uniform pattern,
B`

i obtained from (24) withh = D.

policies, WP and GWS, for the NSFNet with the uniform
traffic pattern. The results shown were obtained by setting the
loss guarantee at each link of the network to the value obtained
by using the diameterD = 4 of the network in place of
parameterh in expression (24); this is the approach suggested
in [15]. Figure 9 shows similar results for the torus network.
Our observations regarding the relative behavior of the two
policies, WP and GWS, from the two figures are similar to the
ones we discussed in the previous section. Specifically, both
policies guarantee that the burst loss of classes 1 and 2 is kept
below the corresponding requirements, but the GWS policy
achieves a burst loss for the overall and best-effort traffic that
is significantly less than that under the WP policy. However,
we also observe that using the diameterD = 4 to obtain the
link-loss guarantees results in over-provisioning of the network
for the guaranteed classes. Indeed, the network-wide burst loss
of class 1 (respectively, class 2) is significantly less than the
required guarantee of10−3 (respectively,10−2).

In order to alleviate the over-provisioning problem, we used
the optimization procedure in Figure 1 to determine an appro-
priate value for the link-loss guaranteeB`

i , i = 1, 2, given the
corresponding end-to-end loss guaranteeBe2e

i . The simulation
results are shown in Figures 10 and 11, for the NSFNet and
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Fig. 10. NSFNet,W = 32 wavelengths,P = 3 traffic classes, uniform
pattern,B`

i obtained by the optimization procedure in Figure 1.
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Fig. 11. Torus,W = 32 wavelengths,P = 3 traffic classes, uniform pattern,
B`

i obtained by the optimization procedure in Figure 1.

torus networks, respectively. Comparing to Figures 8 and 9, we
can see that using a higher value forB`

i results in a higher end-
to-end burst loss probability for class 1 and class 2 bursts, as
expected. However, the burst loss of the guaranteed classes is
kept well below their requirements. Furthermore, the burst loss
of best-effort traffic is reduced, as its bursts can use additional
wavelength resources that were previously dedicated to the
guaranteed traffic; as a result, the overall burst loss is also
reduced.

In Figures 12 and 13 we present results for the torus
topology with the distance-dependent traffic pattern; for the
former figure, the link-loss guarantees were obtained from (24)
with h = D = 4, while for the latter, they were obtained
by the optimization procedure in Figure 1. Similar results
were obtained for the NSFNet. We observe the same relative
behavior for the different curves, as before; the only difference
is that, due to the nature of the traffic pattern, the network can
sustain the same overall burst drop probability at significantly
higher traffic load compared to the uniform traffic pattern.

As a final note, Figures 8-13 plot the network-wide drop
probability for each class, which is an average of the drop
probabilities along all paths, including short and long ones.
Since the results in Figures 8, 9, and 12, were obtained by
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Fig. 13. Torus,W = 32 wavelengths,P = 3 traffic classes,B`
i obtained

by the optimization procedure in Figure 1.

setting the per-link loss guarantees based on the network
diameterD, the end-to-end guarantees are met over all paths
in the network. On the other hand, the results in Figures 10, 11,
and 13, were obtained by optimizing the per-link guarantees
with a value h < D. Although the network-wide drop
probability of the overall traffic is lower in this case, the end-
to-end guarantees may not be met for paths of length greater
thanh. Therefore, for classes of traffic for which guaranteeing
the end-to-end drop probability over the longest path is a
strict requirement, the link loss guarantee must be set based
on the network diameterD. However, for classes of traffic
which can cope with a slightly higher drop probability over the
longest path (e.g., when the cost of recovering at a higher layer
packets carried by a dropped burst is relatively low), using our
approach to optimize the per-link guarantees will result in an
increase of the network-wide traffic carrying capacity due to
lower burst drop rates.

VII. C ONCLUDING REMARKS

We have presented a framework for supporting absolute
QoS guarantees in OBS networks, consisting of a link wave-
length sharing model, and a method to translate end-to-
end loss guarantees into per-link guarantees. Our generalized

wavelength sharing (GWS) approach is effective and efficient
in managing the wavelength resources, is simple to implement,
and outperforms previously proposed methods. The GWS
scheme may also be combined with other mechanisms such
as early burst drop or path clustering [15] to further improve
its performance.
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