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Abstract—We study the problem of carrying voice calls over a
low-earth-orbit satellite network and present an analytical model
for computing call-blocking probabilities for a single orbit of
a satellite constellation. We have devised a method to solve the
corresponding Markov process efficiently for orbits of up to five
satellites. For orbits consisting of a larger number of satellites,
we have developed an approximate decomposition algorithm
to compute the call-blocking probabilities by decomposing the
system into smaller subsystems and iteratively solving each sub-
system in isolation using the exact Markov process. Our approach
can capture blocking due to handoffs for both satellite-fixed and
earth-fixed constellations. Numerical results demonstrate that
our method is accurate for a wide range of traffic patterns and
for orbits with a number of satellites that is representative of
commercial satellite systems.

Index Terms—Call blocking probability, decomposition algo-
rithms, handoffs, low-earth-orbit (LEO) satellite networks.

I. INTRODUCTION

CURRENTLY, we are witnessing an increase in the demand
for a broad range of wireless telephone and Internet ser-

vices. Satellite-based communication is poised to provide mo-
bile telephony and data transmission services on a worldwide
basis in a seamless way with terrestrial networks. Satellite sys-
tems are insensitive to location and can be used to extend the
reach of networks and applications to anywhere on earth.

Satellites can be launched in different orbits, of which the low
earth orbit (LEO), the medium earth orbit (MEO), and the geo-
stationary orbit (GEO) are the most well known. LEO satellites
are placed in orbits at an altitude of less than 2000 km above the
earth. Their orbit period is about 90 min, and the radius of the
footprint area of a LEO satellite is between 3000–4000 km. The
duration of a satellite in LEO orbit over the local horizon of an
observer on earth is approximately 20 min, and the propagation
delay is about 25 ms. A few tens of satellites on several orbits are
needed to provide global coverage. MEO satellites are placed in
circular orbits at an altitude of around 10 000 km. Their orbit
period is about 6 h, and the duration of a satellite in MEO orbit
over the local horizon of an observer on earth is a few hours.
Fewer satellites on two or three orbits are enough to provide
global coverage in a MEO system. Propagation delay in a MEO
system is about 125 ms. GEO satellites are also in circular or-
bits in the equatorial plane at an altitude of 35 786 km, with an
orbital period equal to that of the earth. A satellite in GEO orbit
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appears to be fixed above the earth’s surface. The footprint of
a GEO satellite covers nearly one-third of the earth’s surface
(between 75 south to 75 north). Therefore, a near global cov-
erage can be obtained with three satellites, but the propagation
delay is 250 ms.

A LEO or MEO satellite system is a set of identical satel-
lites launched in several orbital planes, with the orbits having
the same altitude. The satellites move in a synchronized way in
trajectories relative to the earth. Such a set of satellites is re-
ferred to as aconstellation. The position of all the satellites in
relation to the earth at some instance of time repeats itself after
a predetermined period, which is usually several days, while a
satellite within an orbit also comes to the same point on the sky
relative to the earth after a certain time.

In a LEO or MEO satellite system, satellites can communicate
directly with each other by line of sight using intraplane inter-
satellite links (ISLs), which connect satellites in the same orbital
plane, and interplane ISLs, which connect satellites in adjacent
planes. ISLs introduce flexibility in routing; they can be used to
build redundancy into the network; and they permit two users
in different footprints to communicate without the need of a ter-
restrial system. To improve the bandwidth and frequency effi-
ciency, the satellite footprint area is divided into smaller cells.
For each cell within a footprint, a specific beam of the satellite
is used. A constellation of satellites may provide eithersatel-
lite-fixedor earth-fixedcell coverage. In the first case, the satel-
lite antenna sending the beam is fixed, and as the satellite moves
along its orbit, its footprint and the cell move as well. In the case
of earth-fixed cell coverage, the earth’s surface is divided into
cells, as in a terrestrial cellular system, and a cell is serviced
continuously by the same beam during the entire time that the
cell is within the footprint area of the satellite.

As satellites move, fixed and mobile users hand off from one
beam to another (beam handoff) or from one satellite to another
(satellite handoff). The velocity of a satellite is much higher
than that of objects on earth. Therefore, the number of handoffs
during a telephone call depends on the call duration, the beam
size, the satellite footprint size, and the satellite speed, while the
location and mobility of a user only effects the time a handoff
takes place. For example, for a call duration of 3 min, the cus-
tomer of a LEO satellite constellation with an elevation angle of
10 will experience two handoffs. In an earth-fixed system, each
beam is assigned to a fixed cell on the earth within the satellite’s
footprint. During a satellite handoff, all beams are reassigned to
their respective cells in the adjacent footprint area. Therefore,
in these systems, both beam and satellite handoffs occur at the
same time. In a satellite-fixed system, a user may be handed off
to the next beam in the same satellite or the satellite behind, as
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the cell defined by the beam moves away from the user. The
newly entered beam may or may not have enough bandwidth to
carry the handed-off traffic. In the case of satellite-based tele-
phony, the new beam may not be able to carry a handed-off
telephone call, in which case, the call will be dropped. In gen-
eral, handoffs in satellite systems impose a big problem from
the point of quality of service.

Existing and planned LEO/MEO satellite systems for world-
wide mobile telephony include Globalstar, Iridium, ICO, El-
lipso, Constellation, Courier, and Gonets. These systems differ
in many aspects, including the number of orbits and the number
of satellites per orbit, the number of beams per satellite, their
capacity, the band they operate (-band, -band, etc.), and the
access method employed (frequency-, time-, code-division mul-
tiple access). Also, these systems provide different services, and
they may or may not have on-board switching capabilities. For
instance, Iridium has on-board digital processing and switching,
while other systems, such as the Globalstar, act as a bent pipe.
Despite these differences, from the point of view of providing
telephony-based services, the principles of operation are very
similar, and thus, the analytical techniques to be developed in
this work will be applicable to any LEO/MEO satellite system
that offers such services.

A. Related Research

Because of the importance of satellite systems, several perfor-
mance studies have been undertaken. A typical way of modeling
a satellite system in the literature is to represent each cell as an

queue. This approach permits the calculation of
various useful performance measures, such as the call-blocking
probability. However, this type of model does not take into ac-
count the fact that the amount of traffic in one cell depends on
the amount of traffic in one or more other cells. These types of
traffic dependencies are taken into account in our models de-
scribed in Section II.

In [6], Ganzet al. investigated the distribution of the number
of handoffs and the average call-drop probability for LEO
satellite systems. Both beam-to-beam and satellite-to-satellite
handoffs were taken into account. Each cell was modeled as an

queue, where denotes the number of channels
per cell, assuming that the number of handoff calls entering
a cell is equal to the number of handoff calls leaving the cell.
In [8], Jamalipouret al.investigated the traffic characteristics
of LEO systems and proposed a probability density function
to locate the position of each user. Using this function, the
normalized throughput and average delay was calculated. See
also [9] and [7]. In [12], Pennoni and Ferroni described an
algorithm to improve the performance of LEO systems. They
defined two queues for each cell: one for new calls and one
for handoff calls. The calls are held in these two queues for
a maximum allowed waiting time. That is, they are dropped
if they are not served within this time. The queue for new
calls has a maximum waiting time equal to 20 s. The queue
for handoff calls has a maximum waiting time equal to the
crossover time of the overlapping zone of two adjacent cells.
The handoff queue has higher priority than the new calls queue.
Simulation results showed that this algorithm decreased the
call-dropping rate drastically. In [13], Ruizet al.used teletraffic

techniques to calculate the blocking and handoff probabilities.
Various channel assignment strategies were investigated. In
[5], Dosiereet al. defined a model for calculating the handoff
traffic rate. The authors divided a street of coverage into small
pieces, where each piece is equal to the footprint area of a
satellite. Given the total arrival distribution for the whole street
of coverage, the arrival rate of each satellite was obtained by in-
tegrating that distribution for the satellite interval. The handoff
rate was then calculated through a second integration. Once the
handoff rate has been obtained, the blocking probability can be
calculated using the Erlang loss formula.

A number of authors have also dealt with the very interesting
problem of routing in a satellite system. In [17] and [18], Werner
et al. proposed a dynamic routing algorithm for asynchronous
transfer mode (ATM)-based LEO and MEO satellite systems.
Due to the fact that satellites move in orbits and that orbits
slowly rotate around the earth, the network topology can be
seen as consisting of a series of topologies that continuously
repeat themselves. For each topology, end-to-end routes are cal-
culated. Subsequently, an optimization procedure is carried out
over all the network topologies with a view to minimizing the
occurrence of handoffs between successive topologies. In [11],
Mauger and Rosenberg proposed thevirtual noderouting al-
gorithm for ATM traffic. Users are mapped onto virtual nodes,
and each virtual node is served by a satellite. When the satellite
passes, the next satellite takes its place and serves the virtual
node. Routing is performed according to the topology of the vir-
tual nodes.

Chang et al. proposed the finite-state automaton (FSA)
model in [3] and [1] to solve the ISL link assignment problem
in LEO satellite systems. The total time it takes the position
of all the satellites over the earth to repeat itself is divided
into equal-length intervals during which the visibility between
satellites—that is, the network topology of the satellites—does
not change. Given a traffic matrix for each interval, a link
assignment algorithm is run with a view to maximizing the
residual capacity of the bottleneck links. The result is a table
that shows connectivity between satellites for each interval.
These tables can be stored in each satellite, and during the
real-time operation of the system, the intersatellite links are
established according to these tables. Further related research
can be found in [4] and [2].

Uzunaliogluet al. suggested in [15] and [16] a connection
handoff protocol for LEO satellite systems. First, a minimum
cost route for a connection between two points on the earth is ob-
tained. This route is used for as long as possible. When a handoff
occurs at either end of the connection, the protocol simply adds
the new link to the path. This continues for a predetermined
amount of time, when the protocol computes a new end-to-end
path for the connection. In [14], Uzunalioglu proposed a prob-
abilistic routing protocol based on the above approach. Finally,
a new traffic load balancing algorithm was proposed by Kimet
al.in [10].

B. Contributions and Organization

In this paper, we study the problem of carrying voice calls
over a LEO satellite network and present an analytical model
for computing call-blocking probabilities for a single orbit of a
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satellite constellation. We first derive an exact Markov process,
and corresponding queueing network, for a single orbit under
the assumption that satellites are fixed in the sky (i.e., there are
no handoffs of voice calls). We show that the queueing network
has a product-form solution, and we develop a method for com-
puting the normalizing constant. In terms of time complexity,
our method represents a significant improvement (which we
quantify) over a brute-force calculation; however, it can be ap-
plied directly to orbits with at most five satellites. For a system
with a larger number of satellites, we then present an approxi-
mate decomposition algorithm to compute call-blocking proba-
bilities by decomposing the system into smaller subsystems and
solving each subsystem in isolation, using the exact solution de-
scribed above. This approach leads to an iterative scheme, where
the individual subsystems are solved successively until a con-
vergence criterion is satisfied.

Next, we introduce handoffs by considering the system of
satellites as they orbit the earth. For an orbit with earth-fixed
coverage, we then show that there is no blocking due to hand-
offs, and thus, the solution (exact or approximate) obtained
under the assumption that satellites are fixed in the sky can be
used to compute call-blocking probabilities in this case. For an
orbit with satellite-fixed coverage, on the other hand, blocking
due to handoffs does occur. In this case, we show how the
queueing network described above can be extended to model
call handoffs by allowing customers to move from one node
to another. We derive the rate of such node-to-node transitions
in terms of the speed of the satellites and the shape of the
footprints. We also show that the new queueing network has
a product-form solution similar to that under the no-handoffs
assumption. Thus, the exact and approximate algorithms devel-
oped above can be applied directly to compute call-blocking
probabilities under the presence of handoffs.

This paper is organized as follows. In Section II, we develop
an exact Markov process model under the assumption that satel-
lites are fixed in the sky (i.e., no handoffs take place). In Sec-
tion III, we present an approximate decomposition algorithm
for a large number of satellites. In Section IV, we extend our ap-
proach to model handoffs for both earth-fixed and satellite-fixed
coverage. We present numerical results in Section V. In Sec-
tion VI, we conclude this paper by discussing possible direc-
tions in which this work may be extended in the future.

II. A N EXACT MODEL FOR THENO-HANDOFFSCASE

Let us first consider the case where the position of the satel-
lites in the single orbit is fixed in the sky, as in the case of geo-
stationary satellites. The analysis of such a system is simpler,
since no calls are lost due to handoffs from one satellite to an-
other, as when the satellites move with respect to the users on
the earth. This model will be extended in the following section
to account for handoffs in constellations with both earth-fixed
and satellite-fixed coverage.

Each up- and downlink of a satellite has the capacity to sup-
port up to calls, while each intersatellite link has ca-
pacity equal to calls. Let us assume that call requests ar-
rive at each satellite according to a Poisson process, and that call
holding times are exponentially distributed. We now show how

Fig. 1. Three satellites in a single orbit.

to compute blocking probabilities for the three satellites in the
single orbit of Fig. 1. The analysis can be generalized to analyze

satellites in a single orbit. For simplicity, we consider
only shortest path routing, although the analysis can be applied
to any fixed routing scheme whereby the path taken by a call is
fixed and known in advance of the arrival of the call request.

Let be a random variable representing the number of ac-
tive calls between satelliteand satellite , re-
gardless of whether the calls originated at satelliteor . Let
(respectively, ) denote the arrival rate (respectively, mean
holding time) of calls between satellitesand . Then, the evo-
lution of the three-satellite system in Fig. 1 can be described by
the six-dimensional Markov process

(1)

Also let denote a vector with zeros for all random variables
except random variable , which is one. The state transition
rates for this Markov process are given by

(2)

(3)

The transition in (2) is due to the arrival of a call between satel-
lites and , while the transition in (3) is due to the termination
of a call between satellitesand .

Due to the fact that some of the calls share common
up-and-down and intersatellite links, the following constraints
are imposed on the state space:

(4)

(5)

(6)

(7)

(8)

(9)

Constraint (4) ensures that the number of calls originating
(equivalently, terminating) at satellite 1 is at most equal to the
capacity of the up- and downlink of that satellite. Note that a call
that originates and terminates within the footprint of satellite 1
captures two channels; thus the term 2in constraint (4). Con-
straints (5) and (6) are similar to (4) but correspond to satellites
2 and 3, respectively. Finally, constraints (7)–(9) ensure that the
number of calls using the link between two satellites is at most
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equal to the capacity of that link. Note that because of (4)–(6),
constraints (7)–(9) become redundant when . In
other words, there is no blocking at the intersatellite links when
the capacity of the links is at least equal to the capacity of the
up- and downlinks at each satellite.1

It is straightforward to verify that the Markov process for the
three-satellite system shown in Fig. 1 has a closed-form solu-
tion, which is given by

(10)

where is the normalizing constant and
, is the offered load of calls from satelliteto satellite .

As we can see, the solution is the product of six terms of the
form , each corresponding to one of the
six different types of calls. Therefore, it is easily generalizable
to a -satellite system, .

An alternative way is to regard this Markov process as de-
scribing a network of six queues, one for each type
of calls between the three satellites. Since the satellites do not
move, there are no handoffs, and as a consequence customers
do not move from one queue to another (we will see in Sec-
tion IV-B that handoffs may be modeled by allowing customers
to move between the queues). Now, the probability that there are

customers in an queue is given by the familiar
expression , and therefore, the proba-
bility that there are customers in
the six queues is given by (10). Unlike previous studies reported
in the literature, our model takes into account the fact that the six

queues are not independent, since the number of
customers accepted in each queue depends on the
number of customers in other queues, as described by (4)–(9).

Of course, the main concern in any product-form solution is
the computation of the normalizing constant

(11)

where the sum is taken over all vectorsthat satisfy (4)–(9).
We now show how to compute the normalizing constantin
an efficient manner.

We can write as

(12)

1When there are more than three satellites in an orbit, calls between a number
of satellite pairs may share a given intersatellite link. Consequently, the con-
straints of ak-satellite orbit,k > 3, corresponding to (7)–(9) will be similar
to constraints (4)–(6), in that the left-hand side will involve a summation over a
number of calls. In this case, blocking on intersatellite links may occur even if
C � C .

The second step in (12) is due to the fact that once the values
of random variables , representing the number of
calls in each of the intersatellite links, are fixed, then the random
variables and are independent of each other (refer
also to Fig. 1). The third step in (12) is due to the fact that
random variable depends on and and is indepen-
dent of the random variable ; similarly for random variables

and .
When we fix the values of the random variables and ,

the number of up-and-down calls in satellite 1 is described by
an loss system, and thus

(13)

Similar expressions can be obtained for and
, corresponding to satellites 2 and 3, respec-

tively. We can now rewrite (11) for the normalizing constant as
follows:

(14)

Let . Using (14), we can see that
the normalizing constant can be computed in time rather
than the time required by a brute-force enumeration of
all states, a significant improvement in efficiency.

Once the value of the normalizing constant is obtained, we
can compute blocking probabilities by summing up all the ap-
propriate blocking states. Consider the three-satellite orbit of
Fig. 1. The probability that a call that either originates or termi-
nates at satellite 1 will be blocked on the up- and downlink of
that satellite is given by

(15)

while the probability that a call originating at satellite(or satel-
lite ) and terminating at satellite(or ) will be blocked by the
intersatellite link is

otherwise. (16)

Once the blocking probabilities on all up-and-down and in-
tersatellite links have been obtained using expressions similar
to (15) and (16), the blocking probability of calls between any
two satellites can be easily obtained. We note that (15) and (16)
explicitly enumerate all relevant blocking states, and thus, they
involve summations over appropriate parts of the state space
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(a) (b)

Fig. 2. (a) Original six-satellite orbit and (b) augmented subsystems.

of the Markov process for the satellite orbit. Consequently, di-
rect computation of the link blocking probabilities using these
expressions can be computationally expensive. We have been
able to express the up-and-down and intersatellite link blocking
probabilities in a way that allows us to compute these probabili-
ties as a byproduct of the computation of the normalizing. As
a result, all blocking probabilities in a satellite orbit can be com-
puted in an amount of time that is equal to the time needed to ob-
tain the normalizing constant, plus a constant. The derivation of
the expressions for the link blocking probabilities is a straight-
forward generalization of the technique employed in (12) and is
omitted.

III. A D ECOMPOSITIONALGORITHM FOR THENO-HANDOFFS

CASE

Let be the number of satellites in a single orbit andthe
number of random variables in the state description of the corre-
sponding Markov process, . Using the method
described above, we can compute the normalizing constant
in time , as opposed to time needed by a
brute-force enumeration of all states. Although theimprovement
in the running time provided by our method for computing
increases with , the value of will dominate for large values
of . Numerical experiments with the above algorithm indicate
that this method is limited to satellites. That is, it takes
an amount of time on the order of a few minutes to compute
the normalizing constant for five satellites. Thus, a different

method is needed for analyzing realistic constellations of LEO
satellites.

In this section, we present a method to analyze a single orbit
with satellites, , by decomposing the orbit into sub-
systems of three or fewer satellites. Each subsystem is analyzed
separately, and the results obtained by the subsystems are com-
bined using an iterative scheme.

To explain how the decomposition algorithm works, let us
consider the case of a six-satellite orbit, as shown in Fig. 2(a).
This orbit is divided into two subsystems. Subsystem 1 consists
of satellites 1, 2, and 3, and subsystem 2 consists of satellites
4, 5, and 6. To analyze subsystem 1 in isolation, we need to
have some information from subsystem 2. Specifically, we need
to know the probability that a call originating at a satellite in
subsystem 1 and terminating at a satellite in subsystem 2 will be
blocked due to lack of capacity in a link in subsystem 2. Also,
we need to know the number of calls originating from subsystem
2 and terminating in subsystem 1. Similar information is needed
from subsystem 1 in order to analyze subsystem 2.

In view of this, each subsystem is augmented to include two
fictitious satellites, which represent the aggregate behavior of
the other subsystem. In subsystem 1, we add two new satellites,
which we call N1 and S1, as shown in Fig. 2(b). A call origi-
nating at a satellite and terminating at a satellite

will be represented by a call fromto one of
the fictitious satellites (N1 or S1). Depending uponand , this
call may be routed differently. For instance, let us assume that

and . Then, in our augmented subsystem 1, this
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Fig. 3. Decomposition algorithm for a single orbit of a satellite constellation.

call will be routed to satellite S1 through satellite 3. However, if
, the call will be routed to satellite N1 through satellite 1.2

In other words, satellite N1 (respectively, S1) in the augmented
subsystem 1 is the destination for calls of the original orbit that
originate from satellite and are routed to satellite

in the clockwise (respectively, counterclockwise)
direction in Fig. 2(a). Similarly, calls originating from satellite

to satellite and routed in the coun-
terclockwise (respectively, clockwise) direction are represented
in subsystem 1 as calls originating from N1 (respectively, S1) to
. Again, the originating satellite (N1 or S1) for the call depends

on the values of and and on the path that the call follows in
the original six-satellite orbit.

2While this discussion assumes shortest path routing, our model can handle
any fixed-routing scheme.

Subsystem 2 is likewise augmented to include two fictitious
satellites N2 and S2 [see Fig. 2(b)], which represent the aggre-
gate behavior of subsystem 1. Satellites N2 and S2 become the
origin and destination of calls traveling from subsystem 2 to sub-
system 1, and vice versa, in a manner similar to N1 and S1 de-
scribed above.

A summary of our iterative algorithm is provided in Fig. 3.
Below, we describe the decomposition algorithm using the six-
satellite orbit shown in Fig. 2(a). Recall that is
the arrival rate of calls between satellitesand . For analyzing
the augmented subsystems in Fig. 2(b), we will introduce the
new arrival rates and

. Specifically, (respectively, ) accounts for all
calls between satellite and a satellite in subsystem
2 that are routed in the clockwise (respectively, counterclock-
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wise) direction. Similarly, (respectively, ) accounts
for all calls between subsystem 1 and satellite that
are routed in the clockwise (respectively, counterclockwise) di-
rection.

Initially, we solve subsystem 1 in isolation using

(17)

(18)

(19)

(20)

(21)

(22)

Quantity represents the current
estimate of the probability that a call between a satellitein
subsystem 1 and a satellitein subsystem 2 will be blocked
due to the lack of capacity in a link of subsystem 2. For the
first iteration, we use for all and ; how these values
are updated in subsequent iterations will be described shortly.
Thus, the term in (17) represents theeffectivearrival
rate of calls between satellites 1 and 6, as seen by subsystem 1;
similarly for the other terms in (17)–(22).

The solution to the first subsystem yields an initial value for
the probability that a call between a
satellite in subsystem 1 and a satellitein subsystem 2 will be
blocked due to lack of capacity in a link of subsystem 1. There-
fore, the effective arrival rates of calls between, say, satellite 1
and satellite 4 that are offered to subsystem 2 can be initially
estimated as . We can now solve subsystem 2 in
isolation using3

(23)

(24)

(25)

(26)

(27)

(28)

Based on the above discussion, in (24) represents the
effective arrival rate of calls between a satellite in subsystem 1
and satellite 4, as seen by subsystem 2. Expressions (23)–(28)
can be explained in a similar manner. The solution to the second
subsystem provides an estimate of the blocking probabilities

that calls between satellites in the
two subsystems will be blocked due to lack of capacity in a link
of subsystem 2.

The new estimates for are then used in (17) to (22) to up-
date the arrival rates to the two fictitious satellites of augmented
subsystem 1. Subsystem 1 is then solved again, and the esti-
mates are updated and used in (23)–(28) to obtain new arrival
rates for the fictitious satellites of subsystem 2. This leads to an

3In (23), we have that� = 0 because we assume that calls between satel-
lites in subsystem 1 and satellite 4 are routed in the counterclockwise direction;
similarly for (28).

iterative scheme, where the two subsystems are solved succes-
sively until a convergence criterion (e.g., in terms of the values
of the call-blocking probabilities) is satisfied.

Orbits consisting of any number of satellites can be
decomposed into a number of subsystems, each consisting of
three satellites of the original orbit (the last subsystem may con-
sist of fewer than three satellites). The decomposition method is
similar to the one above, in that for subsystem, the remaining
satellites are aggregated to two fictitious satellites. Each sub-
system is analyzed in succession as described above. We note
that when employing the decomposition algorithm, the selection
of the subsystem size will depend on the number of satellites in
the original orbit and how efficiently we can calculate the exact
solution of the Markov process associated with each subsystem.
It is well known in decomposition algorithms that the larger the
individual subsystems that have to be analyzed in isolation, the
better the accuracy of the decomposition algorithm. Thus, as
we mentioned above, we have decided to decompose an orbit
into subsystems of the largest size (three of the original satel-
lites plus two fictitious ones) for which we can efficiently ana-
lyze the Markov process, plus, possibly, a subsystem of smaller
size if the number of satellites is not a multiple of three. Note
also that proving convergence for decomposition algorithms of
the type presented here is a difficult task, and we have not been
able to show that the decomposition algorithm will always con-
verge. However, in our experimentation with a wide range of
traffic patterns and orbit sizes, we have found that the blocking
probabilities converge to within 10 in only a handful of iter-
ations using our algorithm.

IV. M ODELING HANDOFFS

A. Earth-Fixed Coverage

Let us now turn to the problem of determining blocking prob-
abilities in a single orbit of satellites with earth-fixed coverage;
such a coverage is provided by the Teledesic constellation. Let

denote the number of satellites in the orbit. In this case, we as-
sume that the earth is divided intofixed cells (footprints) and
that time is divided in intervals of length such that, during a
given interval, each satellite serves a certain cell by continuously
redirecting its beams. At the end of each interval, i.e., every
time units, all satellites simultaneously redirect their beams to
serve the next footprint along their orbit. They also hand off cur-
rently served calls to the next satellite in the orbit.

We make the following observations about this system.
Handoff events are periodic with a period of time units,
and handoffs take place in bulk at the end of each period.
Also, there is no call blocking due to handoffs, since, at each
handoff event, a satellite passes its calls to the one following
it and simply inherits the calls of the satellite ahead of it.
Finally, within each period , the system can be modeled as
one with no handoffs, such as the one described in the previous
section. Given that the period is equal to the orbit period
(approximately 90 min) divided by the number of satellites,
we can assume that the system reaches steady state within the
period, and thus, the initial conditions (i.e., the number of calls
inherited by each satellite at the beginning of the period) do not
affect its behavior.
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Now, since every units of time, each satellite assumes the
traffic carried by the satellite ahead, from the point of view of
an observer on the earth, this system appears to be as if the
satellites are permanently fixed over their footprints. Hence, we
can use the decomposition algorithm presented above to analyze
this system.

B. Satellite-Fixed Coverage

Consider now satellite-fixed cell coverage. As a satellite
moves, its footprint on the earth (the cell served by the satellite)
also moves with it. As customers move out of the footprint area
of a satellite, their calls are handed off to the satellite following
it from behind. In general, the footprints of adjacent satellites
overlap with each other, and customers in an overlapping area
may have access to both satellites. We assume that a call is
handed off from its current satellite to the satellite following it
in the orbit when it is determined that the latter provides higher
signal quality. Therefore, for the purposes of the following
discussion, we define the footprint of a satellite as the area on
the earth in which the signal from this satellite is of higher
quality than the signal (if any) received by another satellite.

To model handoffs in this case, we make the assumption that
potential customers are uniformly distributed over the part of
the earth served by the satellites in the orbit. This assumption
has the following two consequences.

1) The arrival rate to each satellite remains constant as
it moves around the earth. Then, the arrival rate of calls
between satellite and satellite is given by ,
where is the probability that a call originating by a
customer served by satelliteis for a customer served by
satellite .

2) The active customers served by a satellite can be assumed
to be uniformly distributed over the satellite’s footprint.
As a result, the rate of handoffs from satelliteto satel-
lite that is following from behind is proportional to the
number of calls at satellite.

Clearly, the assumption that customers are uniformly distributed
(even within an orbit) is an approximation. In Section VI, we
will discuss how the results presented in this section can be ex-
tended to accurately model the situation when customers are not
uniformly distributed.

Let denote the area of a satellite’s footprint anddenote
a satellite’s speed. As a satellite moves around the earth, within
a time interval of length , its footprint will move a distance
of , as shown in Fig. 4. Calls involving customers located
in the part of the original footprint of area (the handoff
area) that is no longer served by the satellite are handed off to
the satellite following it. Let , where depends
on the shape of the footprint. Because of the assumption that
active customers are uniformly distributed over the satellite’s
footprint, the probability that a customer will be handed off to
the next satellite along the sky within a time interval of length

is

(29)

Fig. 4. Calculation of the handoff probability.

Define . Then, when there arecustomers served by a
satellite, therateof handoffs to the satellite following it will be

.
Let us now return to the three-satellite orbit (see Fig. 1)

and introduce handoffs. This system can be described by a
continuous-time Markov process with the same number of
random variables as the no-handoffs model of Section II (i.e.,

) and the same transition rates [(2) and (3)],
but with a number of additional transition rates to account
for handoffs. We will now derive the transition rates due to
handoffs.

Consider calls between a customer served by satellite 1 and a
customer served by satellite 2. There are such calls serving
2 customers: customers on the footprint of satellite 1
and on the footprint of satellite 2. Consider a call between
customer A and customer B served by satellite 1 and 2, respec-
tively. The probability that customer A will be in the handoff
area of satellite 1 but customer B will not be in the handoff area
of satellite 2 is . But, from (29), we have that

, so the rate at which these calls expe-
rience a handoff from satellite 1 to satellite 3 that follows it is

. Let ), and define as
a vector of zeroes for all variables except variable, which is
one. Based on the above discussion, we thus have

(30)

Similarly, the probability that customer B will be in the handoff
area of satellite 2 but customer A will not be in the handoff area
of satellite 1 is . Thus, the rate at which
these calls experience a handoff from satellite 2 to satellite 1
that follows it is again

(31)

On the other hand, the probability that both customers A and B
are in the handoff area of their respective satellites is, which,
from (29), is , and thus simultaneous handoffs are not al-
lowed.

Now consider calls between customers that are both served
by the same satellite, say, satellite 1. There aresuch calls
serving 2 customers. The probability that exactly one of
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the customers of a call is in the handoff area of satellite 1 is
2 , so the rate at which these calls experience handoffs
(involving a single customer) to satellite 3 is 2

(32)

As before, the probability that both customers of the call are in
the handoff area of satellite 1 is, and again, no simultaneous
handoffs are allowed.

The transition rates involving the other four random variables
in the state description (1) can be derived using similar argu-
ments. For completeness, these transition rates are provided in
(33)–(38)

(33)

(34)

(35)

(36)

(37)

(38)

From the queueing point of view, this system is the queueing
network of queues described in Section II, where
customers are allowed to move between queues according to
(30)–(38). (Recall that in the queueing model of Section II,
customers are not allowed to move from node to node.) This
queueing network has a product-form solution similar to (10).
Let denote the total arrival rate of calls between satellites
and , including new calls (at a rate of ) and handoff calls (ar-
riving at an appropriate rate). The values of can be obtained
by solving the traffic equations for the queueing network. Let
also be the departure rate when there are of these
calls, including call termination (at a rate of ) and call
handoff (at a rate of 2 ). Also, define . Then,
the solution for this queueing network is given by

(39)

which is identical to (10) except that has been replaced by
.
The product-form solution (39) can be generalized in a

straightforward manner for any-satellite orbit, . We
can thus use the techniques developed in Section II to solve the
system involving handoffs exactly, or we can use the decompo-
sition algorithm presented in Section III to solve orbits with a
large number of satellites.

V. NUMERICAL RESULTS

In this section, we validate both the exact model and the de-
composition algorithm by comparing to simulation results. In
the figures presented, simulation results are plotted along with

95% confidence intervals estimated by the method of replica-
tions. The number of replications is 30, with each simulation
run lasting until each type of call has at least 15 000 arrivals.
For the approximate results, the iterative decomposition algo-
rithm terminates when all call-blocking probability values have
converged within 10 . We implemented our own simulation
software for the satellite system; both the simulation and the it-
erative algorithm were run on a SUN Sparc-10 workstation.

For the results presented here, we consider three different
traffic patterns; similar results have been obtained for several
other patterns. Let denote the probability that a call orig-
inating by a customer served by satelliteis for a customer
served by satellite.4 The first pattern is a uniform traffic pat-
tern such that

uniform pattern (40)

where is the number of satellites. The second is a pattern based
on the assumption of traffic locality. Specifically, it assumes that
most calls originating at a satelliteare to users in satellites 1,
, and 1, where addition and subtraction is modulo-for a
-satellite orbit

locality pattern (41)

The third pattern is such that there are two communities of users,
and most traffic is between users within a given community
(e.g., satellites over different hemispheres of the earth)

(42)

A. Results With the Exact Model

In this section, we present results with the exact Markov
process model for the no-handoffs case developed in Section II.
Recall that we can directly compute the normalizing constant

using (14) for orbits of up to five satellites. Thus, we obtain
the blocking probability values by solving the exact Markov
process for a five-satellite orbit and the three traffic patterns
discussed above.

Fig. 5 plots the blocking probability against the capacity
of up- and downlinks, when the arrival rate and

the capacity of intersatellite links , for the uniform
traffic pattern. Three sets of plots are shown: one for calls
originating and terminating at the same satellite (referred to
as “local calls” in the figure), one for calls traveling over a
single intersatellite link, and one for calls traveling over two

4Our objective in this section is simply to demonstrate the accuracy of the
exact model of Section II and the decomposition algorithm of Section III, both
of which assume that satellites are fixed in the sky. Thus, the traffic patterns we
consider can be thought of as being “attached” to either the satellites or the areas
of the earth covered by each satellite.
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Fig. 5. Call-blocking probabilities for a five-satellite orbit,� = 10; C = 10; uniform pattern.

intersatellite links.5 Each set consists of two plots: one corre-
sponding to blocking probability values obtained by solving the
Markov process and one corresponding to simulation results
(including simulation results is redundant, since we solve the
Markov process exactly; however, we have decided to present
them anyway).

From the figure, we observe that as the capacity of up-
and downlinks increases, the blocking probability of all calls
decreases. However, for calls traveling over at least one inter-
satellite link, the blocking probability curve flattens out after an
initial drop. This behavior is due to the fact that for small values
of , the up- and downlinks represent a bottleneck; thus,
increasing reduces the call-blocking probability signifi-
cantly. However, once increases beyond a certain value,
the intersatellite links become the bottleneck, and the blocking
probability of calls that have to travel over these links is not af-
fected further. On the other hand, the blocking probability of
calls not using intersatellite links (i.e., those originating and ter-
minating at the same satellite) decreases rapidly as in-
creases, dropping to zero for values (because of the
logarithmic scale, values of zero cannot be shown in Fig. 5, so
there are no values plotted when for the curves of
local calls).

Fig. 6 plots the blocking probability for the same calls as in
Fig. 5, against the capacity of intersatellite links; for the
results presented, we assume that and .
In this figure, we can see that as the value of increases,
the blocking probability of calls using intersatellite links de-

5These are the only possible types of calls in a five-satellite orbit and shortest
path routing. Furthermore, because of symmetry, the results are the same re-
gardless of the satellite at which the calls originate or terminate.

creases, as expected. However, the blocking probability of local
calls (i.e., calls originating and terminating at the same satellite,
which do not use intersatellite links) increases with increasing

. This behavior can be explained by noting that as
increases, a larger number of nonlocal calls (i.e., calls using in-
tersatellite links) is accepted (since their blocking probability
decreases). Since both local and nonlocal calls compete for up-
and downlinks, an increase in the number of nonlocal calls ac-
cepted will result in higher blocking probability for local calls.
But when the value of exceeds the value of (which is
equal to 20 in this case), the up- and downlinks become the bot-
tleneck, and further increases in have no effect on blocking
probabilities.

Fig. 7 is similar to Fig. 5 except that the arrival rate is
instead of (all other parameters are as in Fig. 5). The behavior
of the various curves is similar to that in Fig. 5. The main differ-
ence is that the blocking probabilities in Fig. 7 are significantly
lower, a result that is expected due to the lower arrival rate.

Finally, Figs. 8 and 9 show results for the same parameters
as in Fig. 5 but correspond to the locality and two-community
traffic patterns, respectively. Again, the behavior of the curves is
similar for all three figures, although the actual blocking prob-
ability values depend on the traffic pattern used.

The results in Figs. 5–9 illustrate the fact that the blocking
probability values obtained by solving the Markov process
match the simulation results; this is expected since the Markov
process model we developed is exact. Thus, this model can be
used to study the interplay between various system parameters
(e.g., , , traffic pattern, etc.), and their effect on the
call-blocking probabilities, in an efficient manner. We note that
solving the Markov process takes only a few minutes, while
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Fig. 6. Call-blocking probabilities for a five-satellite orbit,� = 10; C = 20; uniform pattern.

Fig. 7. Call-blocking probabilities for a five-satellite orbit,� = 5; C = 10; uniform pattern.

running the simulation takes anywhere between 30 min and
several hours, depending on the value of the arrival rates.

B. Validation of the Decomposition Algorithm

We now validate the decomposition algorithm developed in
Section III by comparing the blocking probabilities obtained
by running the algorithm to simulation results. We consider a

single orbit of a satellite constellation consisting of 12 satellites,
a number representative of typical commercial satellite systems.
In all cases studied, we have found that the algorithms converge
in only a few (less than ten) iterations, taking a few minutes to
terminate. On the other hand, simulation of 12-satellite orbits
is quite expensive in terms of computation time, taking several
hours to complete.
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Fig. 8. Call-blocking probabilities for a five-satellite orbit,� = 10; C = 10; locality pattern.

Fig. 9. Call-blocking probabilities for a five-satellite orbit,� = 10;C = 10; two-community pattern.

Fig. 10 plots the blocking probability against the capacity
of up- and downlinks, when the arrival rate and

the capacity of intersatellite links for the uniform
traffic pattern. Six sets of calls are shown: one for local calls

and five for nonlocal calls. Each set consists of two plots: one
corresponding to blocking probability values obtained by run-
ning the decomposition algorithm of Section III and one cor-
responding to simulation results. Each nonlocal call for which
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Fig. 10. Call-blocking probabilities for a 12-satellite orbit,� = 5; C = 20; uniform pattern.

results are shown travels over a different number of intersatel-
lite links, from one to five. Thus, the results in Fig. 10 represent
calls between all the different subsystems in which the 12-satel-
lite orbit is decomposed by the decomposition algorithm.

From the figure, we observe the excellent agreement between
the analytical results and simulation. The behavior of the curves
can be explained by noting that when the capacity of up-
and downlinks is less than 20, these links represent a bottle-
neck. Thus, increasing the up- and downlink capacity results in
a significant drop in the blocking probability for all calls. When

, however, the intersatellite links become the bottle-
neck, and nonlocal calls do not benefit from further increases in
the up- and downlink capacity. We also observe that the larger
the number of intersatellite links over which a nonlocal call
must travel, the higher its blocking probability, as expected. The
blocking probability of local calls, on the other hand, drops to
zero for , since they do not have to compete for in-
tersatellite links.

Figs. 11 and 12 are similar to Fig. 10 but show results for the
locality and two-community traffic patterns, respectively. For
the results presented, we used and , and
we varied the value of . We observe that the values of
the call-blocking probabilities depend on the actual traffic pat-
tern, but the behavior of the various curves is similar to that in
Fig. 10. Finally, in Fig. 13, we fix the value of to 20,
and we plot the call-blocking probabilities for the two-commu-
nity traffic pattern against the capacity of the intersatellite
links.

Overall, the results in Figs. 10–13 indicate that analytical re-
sults are in good agreement with simulation over a wide range of
traffic patterns and system parameters. Thus, our decomposition

algorithm can be used to estimate call-blocking probabilities in
LEO satellite systems in an efficient manner.

VI. CONCLUDING REMARKS

We have presented an analytical model for computing
blocking probabilities for a single orbit of a LEO satellite
constellation. We have devised a method for solving the exact
Markov process efficiently for up to five-satellite orbits. For
orbits consisting of a larger number of satellites, we have de-
veloped an approximate decomposition algorithm to compute
the call-blocking probabilities by decomposing the system into
smaller subsystems and iteratively solving each subsystem in
isolation using the exact Markov process. We have also shown
how our approach can capture blocking due to handoffs for
both satellite-fixed and earth-fixed orbits.

The analytical model we presented in this paper can be ex-
tended in several directions, some of which are the subject of
current research. Assuming that a constellation of satellites con-
sists of orbits, a natural approach is to decompose it into
subsystems, each representing a single orbit, which are then
solved using the techniques we developed here. When com-
bining the solutions to the subsystems, the traffic on interorbit
links must also be accounted for. While in this paper we have
considered a fixed routing scheme, alternate routing schemes
can be modeled using the techniques we developed in [19, Sec-
tion IV-B]. It is also possible to improve the performance of
handoff calls by reserving a set of channels on each link for the
exclusive use of these calls. Channel reservation can be modeled
by a modified Markov process for the single subsystem studied
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Fig. 11. Call-blocking probabilities for a 12-satellite orbit,� = 5; C = 10; locality pattern.

Fig. 12. Call-blocking probabilities for a 12-satellite orbit,� = 5; C = 10; two-community pattern.

in Section II; we believe that a closed-form solution for the mod-
ified process can be obtained. Finally, it is possible to extend
our approach to analyze the case of heterogeneous traffic (i.e.,
when customers are not uniformly distributed over the earth, an
assumption we made in Section IV). One approach to account

for different geographic arrival rates is to segment the band of
earth covered by the satellites into fixed regions, each with a
different arrival rate of new calls. This approach gives rise to a
periodic Markov process model whose special structure can be
exploited to solve it efficiently.
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Fig. 13. Call-blocking probabilities for a 12-satellite orbit,� = 5; C = 20; two-community pattern.

Our approach cannot be used directly to model dynamic (or
adaptive) routing algorithms, or scenarios in which the traffic in-
tensity varies over time. New techniques are needed to analyze
satellite constellations under these assumptions, and we are cur-
rently investigating these problems.
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