Architectural Support for Internet Evolution and Innovation

George N. Rouskas

Department of Computer Science
North Carolina State University
http://net-silos.net/

Joint work with: Ilia Baldine (RENCI), Rudra Dutta (NCSU), Anjing Wang (Ericsson), Mohan Iyer (Oracle)
Outline

- **Motivation**: Challenges with Internet Architecture
- **SILO**: A Meta-Design Framework
- **SILO as Research Tool**: Cross-Layer Experimentation
- Summary and Demo
In Search of Next Generation Internet

Early Pioneer Work

- NewArch (DARPA)
- SIGCOMM FDNA
- NSF FIND
- Euro−FIRE
- Euro−4WARD
- Asia Future Internet Forum

- NSF GENI
- NSF FIA
- Pouzin Society
1. **Evolution**: function-heavy protocols with built-in assumptions
2. **High barrier to entry**: for new data transfer protocols
3. **Cross-layer design**: lack of inter-layer interactions/controls
Protocol Evolution: Transport

Several distinct functions:

- identify application endpoints (ports)
- e2e congestion control
- multi-homing (SCTP)
- reliability semantics (TCP, RDP, SCTP, etc)

→ evolution of individual functions affects entire transport layer

Lack of clear separation between policies and mechanisms

- window-based flow control vs. how window size may change

→ prevents reuse of various components

Built-in assumptions about IP addresses

→ transition to IPv6, support for mobility difficult
High Barrier to Entry

- New data transfer protocols difficult to implement/deploy
 - except for user-space

- Experimental network designs crucial for:
 - gaining insight
 - understanding protocol operation
 - discovering new knowledge rooted in physical world

- Implementations on commodity HW/SW remain challenging:
 - require modification of OS kernel
 - involve significant expertise
 - limit ability to “play” with network stack
Cross-layer design a major research theme over last decade:
- wireless networks
- TCP congestion control
- optical networks (later)
- ...

Adoption of ideas in operational networks quite slow:
- no interfaces for inter-layer interactions/cross-layer controls
- lack of experimental work
 → reliance on simulation with invalid assumptions
Accommodating New Functionality

- Deploy half-layer solutions (MPLS, IPSec)
 → layers become markers for vague functional boundaries

- Adapt existing implementation to new situations
 → TCP over wireless/large bw/delay product networks

- Implement own UDP-like data transfer
 → no reuse or kernel optimizations

- Abandon the old: new implementations for sensor networks
 → Internet balkanization
Role-Based Architecture (RBA) [BFH 2003]

- New abstraction: organize protocols in **heaps**, not stacks
- Richer interactions among protocols \rightarrow flexibility
- Require new system-level implementations
Recursive Network Architecture (RNA) [TP 2008]

- **Meta-protocol**: generic protocol layer with basic services
- Each layer in stack → appropriately configured instantiation
- Allows reuse, cleaner cross-layer interactions, dynamic composition

![Diagram of Recursive Network Architecture]

- MP-4
- MP-3
- MP-2
- MP-1
- Physical
Meta-protocol: generic protocol layer with basic services

Each layer in stack → appropriately configured instantiation

Allows reuse, cleaner cross-layer interactions, dynamic composition
Meta-protocol: generic protocol layer with basic services

Each layer in stack → appropriately configured instantiation

Allows reuse, cleaner cross-layer interactions, dynamic composition

![Diagram of MP-4 to Optical layers](image-url)
Decomposes function-heavy transport layer

- “true” e2e functions → reliable packet transport
- “middlebox” functions → endpoint naming, congestion control

Negotiation plane → cross-layer interactions
Layering As Optimization Decomposition

- Protocol layers integrated into mathematical framework
 [CLCD 2007] [LSS 2006]
- Global optimization problem: network utility maximization
- Decomposition into subproblems → layering
 - optimal modules (protocols) map to different layers
 - interfaces between layers coordinate the subproblems
Layering As Optimization Decomposition

- Clean-state optimization → layered network architecture
 - optimal layering ≠ TCP/IP stack
 - various representations of optimization problem → different layered architectures
 - (loose) coupling among layers → cross-layer considerations
Our View

- Internet architecture houses an effective design
- **But:** it is not itself effective in enabling evolution
- New architecture must be designed for *adaptability/evolvability*
- New architecture must *preserve/generalize* layering
- SILO objective: *design for change*
What is Architecture?

- Fundamental elements/principles vs. design decisions
What is Architecture?

- Fundamental elements/principles vs. design decisions
- Diverse points of view → FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, communication technologies (wireless, optical), ···
What is Architecture?

- Fundamental elements/principles vs. design decisions
- Diverse points of view → FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, communication technologies (wireless, optical), · · ·
- Our definition:
What is Architecture?

- Fundamental elements/principles vs. design decisions
- Diverse points of view → FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, communication technologies (wireless, optical), · · ·

Our definition:

it is precisely the characteristics of the system that does not change itself, but provides a framework within which the system design can change and evolve
Obtain a meta-design that explicitly allows for future change

Not a particular design or arrangement of specific features
Obtain a meta-design that explicitly allows for future change

Not a particular design or arrangement of specific features

The goal is not to design the “next” system, or the “best next” system, but rather a system that can sustain continuing change.
SILO Architecture Highlights

Building Blocks: services of fine-grain functionality

Design Principles:
1. Generalize traditional layer stack
2. Enable inter-layer interactions:
 - knobs: explicit control interfaces
3. Design for change:
 - facilitate introduction of new services
4. Separate control from data functions
Generalization of Layering

- **Silo**: vertical composition of services
 → preserves layering principle

- **Per-flow** instantiation of silos
 → introduces flexibility and customization

- **Decoupling** of layers and services
 → services introduced at point in stack where necessary
Silos: Generalized Protocol Stacks

Cross-Service Tuning

Knobs

Silo & Service Mgmt

Composability Constraints

Physical Layers
- **Knobs**: explicit control interfaces
- adjustable parameters specific to functionality of service
- enable info exchange among services

Algorithms may optimize jointly the behavior of services in a silo
Inter-Layer Interactions (2)

Upward information passing

Diagram showing upward information passing between different layers.
Inter-Layer Interactions (2)

Downward information passing
Inter-Layer Interactions (2)

Up-and-down information passing
Silo-wide optimization/calibration
Architecture does not dictate services to be implemented

Provide mechanisms to:
- introduce new services
- compose services into silos

Ontology of services: describes
- service semantics → function, data/control interfaces
- relationship among services → relative ordering constraints
Ontology – Networking Knowledge

Architectural Support for Internet Evolution and Innovation
Constraints on composing services A and B:
- A requires B
- A forbids B
- A must be above (below) B
- A must be immediately above (below) B
- Negations, AND, OR

Minimal set:
- Requires, Above, ImmAbove, NotImmAbove

All pairwise condition sets realizable
- Forbids = (A above B) AND (B above A)
- Above = NOT Below
Service Composition Problem

- Given: a set of essential services ← application
- Obtain a valid ordering of these and additional services
 - or, identify conflicts with constraints
- Simple composition algorithm implemented
- Ongoing research in formalizing the problem
The SILO Hourglass

- Applications
- SILO Universe
- SILO
- Transport technologies
- SONET
- OTN
- PPP
- 802.11
- 802.16
- Ethernet
- Physical interfaces
SILO Software Prototype

http://net-silos.net/
SILO As a Research Tool

GENI Control Framework
- Provide information on substrate measurement capabilities
- Sliver substrate measurement capabilities
- Moderate access to the slice
- Export unified measurement interface
- Request specific measurements
- Perform experiment in a slice
- Provide toolkit for cross-layer experimentation

Integrated Measurement Framework
- Control the substrate
- Configure specific measurement capabilities
- Acquire measurements

Substrate w/ programmable measurement devices

EXPERIMENTER

Architectural Support for Internet Evolution and Innovation
IEEE DLT, October 2010 – p.28
SILO As a Research Tool

- Deploys in a slice

- Researcher brings:
 - custom services
 - tuning algorithms
 - ontology updates

- Connect to measurement framework → cross-layer protocol experimentation tool
Optical substrate can no longer be viewed as black box
Optical substrate can no longer be viewed as black box

Collection of intelligent and programmable resources:
Optical substrate can no longer be viewed as black box

Collection of intelligent and programmable resources:
- optical monitoring, sensing mechanisms
- amplifiers, impairment compensation devices
- tunable optical splitters
- configurable add-drop
- programmable mux-demux (e.g., adjust band size)
- adjustable slot size
- ...
Cross-Layer Interactions

- Impairment-aware RWA and network design
- Placement of optical sub-systems (converters, amplifiers, regenerators)
- Traffic grooming
- Inter-layer QoS and traffic engineering
- Optical layer multicast
- Multi-layer failure localization and recovery
- ...
IMF Physical Infrastructure

- VOA
- SOA
- PCB
- Polatis Switch
- Infinera DTN
- NetFPGA
- SOA-Control Prototype Board

Architectural Support for Internet Evolution and Innovation
IMF Demo – Results
IMF Demo – Results

The graphs show the variation of a parameter over time. The top graph, labeled 'port 23', displays a wave-like pattern indicating periodic changes, while the bottom graph, also labeled 'port 23', shows a more random fluctuation.
Vision – enable flexibility, evolution: “design for change”
- fine-grain, reusable services, explicit control interface
- enables experimentation, flexibility, community of innovation
- per-flow service composition (silos)
- ease of evolution, policies

Framework – provide architectural support to vision:
- constrained composition
- commoditize cross-layer interaction / optimization
Ongoing Efforts

- New research directions
 - silos in the core and scalability
 - policy enforcement through composition constraints
 - (generalized) virtualization as a service

- Extend the prototype
 - portfolio of reusable services
 - optical testbed deployment → breakable experimental net (BEN)