RWA in WDM Rings: Efficient Exact Formulations Based on Maximal Independent Sets

George N. Rouskas

Department of Computer Science
North Carolina State University

Joint work with: Dr. Emre Yetginer (Tubitak, Turkey), Zeyu Liu (NCSU)
Outline

- Routing and Wavelength Assignment (RWA)
- Existing ILP Formulations
- New ILP Formulations Based on
 - MIS Decomposition
 - MIS Selection
- Numerical Results
- Conclusion and Future Research Directions
Why “RWA in Rings”?

Why “RWA in Rings”?

Why “RWA”?

- subproblem of all optical network design problems
 → speed up “what-if” analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
- intellectually appealing!
Why “RWA in Rings”?

- Why “RWA”?
 - subproblem of all optical network design problems
 → speed up “what-if” analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
 - intellectually appealing!

- Why “Rings”?
 - ring topologies prevalent today and in foreseeable future
 - insight into RWA problem in mesh topologies
Routing and Wavelength Assignment (RWA)

- Fundamental control problem in optical networks

- Objective: for each connection request determine a lightpath, i.e.,
 - a path through the network, and
 - a wavelength

- Two variants:
 1. **online RWA**: connection requests arrive/depart dynamically
 2. **static RWA**: a set of traffic demands to be established simultaneously
Static RWA

Input:
- network topology graph $G = (V, E)$
- traffic demand matrix $T = [t_{sd}]$

Objective:
- minRWA: establish all demands with the minimum # of λs
- maxRWA: maximize established demands for a given # of λs

Constraints:
- wavelength continuity: each lightpath uses the same λ along path
- distinct wavelength: lightpaths using the same link assigned distinct λs

NP-hard problem (both variants)
Solution Approaches

1. ILP formulations
 - Link-based
 - Path-based
 - MIS-based

2. Heuristics
 - Decomposition: R & WA
 - Multi-layer graph
 . . .
Challenges

- Existing approaches do not scale well with:
 - network size
 - number of wavelengths
- Quality of heuristics is difficult to characterize
- Large λ regime not explored
RWA: Symmetry
Link ILP Formulation

- Nodes/links are entities of interest
- Focus on traffic demand to and from nodes, on links
- Bridging variable: demand between nodes on links
Nodes/paths are entities of interest
Demand is still between nodes
For each given demand node pair, list all paths
 → typically, a subset of all paths

assign variable to path traffic flow → implicitly identifies demand
for each link, sum up path flow variables
 → constrain with capacities
RWA As Graph Coloring

[Diagram showing a graph with nodes and edges labeled 1 to 6 on the left, and a smaller graph on the right with nodes 1 to 6.]
Independent set: a set of vertices in a graph no two of which are adjacent

Maximal independent set: not a subset of any other independent set
Precompute k paths for each source-destination pair

Create the path graph G_p:
- each node in G_p corresponds to a path in the original network
- two nodes connected in G_p if corresponding paths share a link

Enumerate the MISs of G_p

Set up ILP to assign wavelengths to each MIS
Comparison

<table>
<thead>
<tr>
<th>Formulation</th>
<th># Variables</th>
<th># Constraints</th>
<th>Symmetry?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>$O(N^4W)$</td>
<td>$O(N^3W)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Path</td>
<td>$O(N^2W)$</td>
<td>$O(N^2W)$</td>
<td>Yes</td>
</tr>
<tr>
<td>MIS</td>
<td>$O(3^{N^2/3})$</td>
<td>$O(N^2)$</td>
<td>No → future-proof</td>
</tr>
</tbody>
</table>
Running Time Results, $W = 120$
Running Time Results, $W = 120$
Running Time Results, $W = 120$
Clockwise paths do not intersect with counter-clockwise paths:

\[G_p = G_{cw}^p \cup G_{ccw}^p \]

\(M, M_{cw}, M_{ccw} \): # of MISs of \(G_p, G_{cw}^p, G_{ccw}^p \):

\[M_{cw} = M_{ccw} = \sqrt{M} \]

→ orders of magnitude decrease in # of variables/size of formulation

Slight modifications to formulation
Further Decomposition: MISD-4

- Consider **clockwise** direction only
 - similar steps for counter-clockwise

- Partition ring in two parts such that:

\[G_{cw}^p = G_{cw,0}^p \cup G_{cw,1}^p \cup G_{cw,core}^p \]
Express each MIS m of G^{cw}_p as:

$$m = m^0 \cup m^1 \cup q$$

Modify the formulation appropriately

- # MIS variables ↓
- # constraints ↑

Recursively partition the two ring parts to effect higher-order decompositions (MISD-8, MISD-16, . . .)
Results: # of MIS Variables

![Graph showing the number of MIS variables for different values of N.]

- MIS
- MISD−2
- MISD−4
- MISD−8
Running Time Results, $W = 120$
Results: Scalability with W

![Graph showing scalability with W]
16-node ring solution takes < 1 sec for any # of λs
→ problem solved!
Discussion

- 16-node ring solution takes < 1 sec for any # of λs → problem solved!

- Can we apply MIS decomposition to mesh networks?
Discussion

- 16-node ring solution takes < 1 sec for any # of λs
 → problem solved!
- Can we apply MIS decomposition to mesh networks?
 - yes – and it works well
Discussion

- 16-node ring solution takes \(< 1\) sec for any # of \(\lambda\)s
 \(\rightarrow\) problem solved!

- Can we apply MIS decomposition to mesh networks?
 - yes – and it works well
 - but: size of initial MIS set orders of magnitude larger
 \(\rightarrow\) back to the drawing board
of MIS Variables

![Graph showing the number of MIS Variables with a log-log scale. The graph compares different MIS types: MIS, MISD-2, MISD-4, and MISD-8. The x-axis represents the value of N, and the y-axis represents the number of MISs. Each line represents a different MIS type, with distinct markers and colors.](image)
Can We Do Better?

Graph Description:
- **X-axis:** Number of links (N)
- **Y-axis:** SOL Time (s)
- **Legend:**
 - link
 - path
 - MIS
 - MISD−2
 - MISD−4
 - MISD−8
 - Weighted MIS
- Plot shows the increase in SOL time with the number of links for different link weight configurations.

Key Findings:
- The SOL time increases exponentially with the number of links.
- The Weighted MIS configuration has the highest SOL time, followed by MISD−8, MISD−4, MISD−2, path, and link.
- The SOL time for the Weighted MIS is significantly higher than for other configurations.

Graph Notes:
- **Mem:** 7200
- **tLim:** 0.001
- The graph indicates that increasing the number of links significantly affects the SOL time, suggesting a need for more efficient link weight configurations.
Observations

- # of MIS variables: millions or more
Observations

- # of MIS variables: millions or more
- # of non-zero variables in optimal solution: < 100
Observations

- # of MIS variables: millions or more
- # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
Observations

- # of MIS variables: millions or more
- # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
 → Some MIS variables important, others not
Observations

- # of MIS variables: millions or more
- # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
 → Some MIS variables important, others not
- Can we identify the important ones?
MIS Selection

- Prune useless MIS variables
 → those containing paths with no traffic
- Rank remaining MIS variables in decreasing order of weight:
 - path (node) weight:
 \[w = \text{degree}^2 \times \text{traffic} \]
 - MIS weight:
 \[\sum_{\text{node } i \in \text{MIS}} w_i \]
- Include only top 10% of ordered MIS variables in formulation
Results

INFORMS TELECOM 2010, May 7, 2010 – p. 28
MIS Generation

- Large rings and mesh networks:
 - bottleneck shifts from CPLEX to enumeration of MIS variables
 - MIS set cannot fit in memory
- New algorithms needed: enumerate only most promising MIS variables
 - topic of ongoing research
RWA problem can be solved efficiently in rings
→ extensive “what-if” analysis now possible

Current research focuses on:
- extending MIS selection to mesh networks
- efficient ILP formulations for optical network design problems
 - incorporate MIS decomposition for RWA
 - employ problem-specific knowledge