ABSTRACT

ILTA BALDINE. Multicast Routing With End-to-End Delay and Delay Variation

Constraints (Under the direction of Professor George Rouskas.)

We study the problem of constructing multicast trees to meet the quality of service
requirements of real-time, interactive applications operating in high-speed packet-
switched environments. In particular, we assume that multicast communication de-
pends on (a) bounded delay along the paths from the source to each destination, and
(b) bounded variation among the delays along these paths. We first establish that
the problem of determining such a constrained tree is A/P-complete. We then derive
heuristics that demonstrate good average case behavior in terms of the maximum
inter-destination delay variation of the final tree. In addition, our heuristics achieve
their best performance under conditions typical of multicast scenarios in high-speed
networks. We also show that it is possible to dynamically reorganize the initial tree
in response to changes in the destination set, in a way that is minimally disruptive

to the multicast session.
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Chapter 1

Introduction

1.1 Issues in Multicast Communications

In multicast communication messages are concurrently sent to multiple destina-
tions, all members of the same multicast group. Mechanisms to support such a form
of communication are becoming an increasingly important component of the design
and implementation of distributed systems [1]. One of the core issues that needs to be
addressed as part of providing such mechanisms is the issue of routing, which primar-
ily refers to the determination of a set of paths to be used for carrying the messages
from the source to the destinations nodes. For reasons related to the efficient use
of network resources involved in a multicast session, typical approaches to multicast
routing require the transmission of packets along the branches of a tree spanning the
source and destination nodes.

The problem of computing multicast trees has received considerable attention in
the past, and several algorithms have been proposed based on a number of optimiza-
tion goals. One frequently considered optimization objective is to minimize the total
cost of the tree, which is taken as the sum of the costs on the links of the multicast
tree. The minimum cost tree is known as the Steiner tree [2], and finding such a tree
is a well-known NP-complete problem [3].

While total tree cost as a measure of bandwidth efficiency is certainly an important

parameter, it is not sufficient to characterize the quality of the tree as perceived by



the interactive multimedia and real-time applications which are expected to utilize
emerging high-speed networks. More specifically, networks supporting real-time traffic
will be required to provide certain quality of service guarantees in terms of the end-
to-end delay along the individual paths from the source to each of the destination
nodes. The problem of routing multicast traffic with real-time constraints has been
studied in [4, 5] and heuristics to compute low-cost trees which guarantee an upper
bound on the end-to-end delay have been developed.

In this work we consider an additional criterion that can be used to characterize
the quality of the multicast tree for interactive, real-time applications. In particular,
we assume that, in addition to end-to-end delay bounds, the multicast tree must
also guarantee bounds on the variation among the delays along the individual source-
destination paths. One can think of such a bound as providing synchronization among
the various receivers, in order to ensure that no receiver is “left behind” and none is
“far ahead” during the lifetime of the session. Although delay variation has not, to the
best of our knowledge, been considered in the design of multicast tree algorithms, the
maximum delay variation among the paths of the final tree was one of the performance
metrics included in the comparative study in [6, T].

There are several situations in which the need for bounded variation among the
end-to-end delays arises. During a teleconference, for instance, it is important that
the current speaker be heard by all participants at the same time, or else the com-
munication may lack the feeling of an interactive face-to-face discussion. As another
example, consider the use of multicast messages to update multiple copies of a repli-
cated data item (or file) in a distributed database system. Minimizing the delay
variation in this case would minimize the length of time during which the database
is in an inconsistent state. Furthermore, being able to look at the information car-
ried by the multicast message long before others can do the same, might, for certain
applications, translate into gaining a competitive edge. A distributed game scenario
in which a number of players are connected over the network to a game server, and
compete against each other using information sent by the server to their screens,

would be one such example.



1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2 we will present a survey of existing
algorithms dealing with the problems described above. Chapter 3 presents a model
that captures the salient features of multicast communication over packet-switched
networks. In Chapter 4 we show that the problem of constructing trees to guarantee a
bounded variation of the end-to-end delays along the source-destination paths is N'P-
complete. In Chapter 5 we develop heuristic algorithms for this problem. Following
this, in Chapter 6 we also describe an algorithm for dynamically reorganizing the
initial tree as nodes are added to, or deleted from the multicast group. We present

some numerical results in Chapter 7, and conclude the paper in Chapter 8.



Chapter 2

Overview of Related Work

The problem of multicast routing has been studied quite extensively. In this
chapter we will attempt to present a brief overview of the work done in this direction.
A comprehensive study of multicast routing algorithms for high-speed networks, along
with performance comparisons of different approaches can be found in [6], [7], [8].

The previous chapter has already described some of the issues in multicasting. The
most important problem associated with multicasting is routing. To be more exact,
the problem involves building a multicast tree which satisfies certain parameters,
specified by the user. In addition, we may also wish to do it in most efficient manner
from the point of view of the network. This involves using up as few of network
resources as possible.

Multicast routing algorithms can be roughly classified into three categories de-
pending on the optimization goals. The first one is governed exclusively by the user
constraints on the multicast tree. The only constraint that has been used in the past
is the end-to-end delay in the routing tree. The constraint stems from the user’s de-
sire to deliver the information to the clients as fast as possible. This problem can be
easily solved in polynomial time by any of the existing shortest path algorithms (e.g.
Dijkstra’s, see [9]), which create a tree of shortest paths, spanning the source node
and the destination nodes. The cost of an edge in a graph representing a network in
this case is proportional to the propagation delay on the corresponding link of the

network. It is obvious that if a tree of shortest paths cannot satisfy the user-imposed



delay constraint, no other tree can.

The second variety looks at the problem purely from the standpoint of the network
and attempts to minimize the usage of network resources by the multicast connection.
This routing problem has a corresponding well-defined graph problem, known as the
Steiner tree problem. The Steiner tree problem involves constructing a tree in a
weighted graph, which spans some subset of nodes and possesses minimal cost among
all such trees. The weight of an edge in such a graph, representing network topology,
could be some measure of the utilization of the corresponding link. Unfortunately, this
problem has been proven to be NP-complete (see [2]), which makes it unlikely that
it can be solved by an algorithm in polynomial time. However, there exist several
polynomial heuristics, which can successfully approximate the optimal solution to
within a factor of 2 or better, like the KMB heuristic (see [10]) or the Rayward-Smith
heuristic (see [11]).

The KMB heuristic operates by first creating an induced complete graph on the
subset of nodes comprising the destination nodes and the source node. It uses shortest
path distances between nodes as costs of the edges of this induced graph. It then uses
Prim/Dijkstra’s minimum spanning tree algorithm to find such a tree in the induced
graph. The last step of the heuristic is the mapping of this tree back into the original
graph. In contrast, the Rayward-Smith heuristic proceeds iteratively, starting with
the set of subtrees of the size of one node each (the nodes being members of the
multicast group and the source node). It uses an empirical function to unite these
subtrees into the final multicast tree.

An attempt to reconcile the requirements of the user with the efficient use of
network resources produced a third variety of multicast routing problems, known as
constrained Steiner tree problem. This is the area where most of the work in mul-
ticast routing has been concentrated in the past few years. The goal is to minimize
the cost of the multicast tree while satisfying some user-defined constraint or con-
straints. These requirements involve assigning two different costs to each edge of the
graph representing a network. One measure usually reflects the delay on the corre-
sponding link, while the other describes the utilization of that link. Again, the only

user constraint, that has been considered so far, is the maximum end-to-end delay



in a multicast tree. Due to the fact that the underlying unconstrained Steiner prob-
lem is N'P-complete, only heuristical approaches can be used in the solution of the
constrained problem. Two heuristics, developed in the past several years, which are
worth noting, are BSMA and KPP.

Both BSMA and KPP try to minimize the overall routing tree cost, while satisfying
the end-to-end delay constraint, however, they use two very different approaches.
KPP was developed using the KMB heuristic as a basis. It uses an empirical function
to construct the required multicast tree. BSMA, on the other hand, attempts to
partially enumerate all delay-constrained routing trees and choose the one with the
smallest cost. It begins with a tree of shortest paths (since if the tree of shortest
paths can’t satisfy the delay constraint, no other tree can), and proceeds to optimize
it using a technique called path switching - taking out “expensive” paths and replacing
them with paths which have smaller cost and which satisfy the delay constraint. Both
these heuristics possess high time complexity.

In our study, in addition to the delay constraint, we introduce a second user-
imposed limitation on the routing tree - the delay-variation constraint. We do not
consider network-side optimization as our goal. However, we plan to introduce cost

optimization as one of the requirements in our future work.



Chapter 3

Network Model for Multicasting

We consider the routing of multicast connections in a packet-switched communi-
cation network. The network is represented by a weighted directed graph GG = (V, A),
where V' denotes the set of nodes, and A, the set of arcs, corresponds to the set of
communication links connecting the various nodes. We will use n =| V' | to refer to
the number of nodes in the network. Without loss of generality, we only consider
graphs with at most one arc between an ordered pair of nodes.

We define a link-delay function D: A — R* which assigns a non-negative weight
to each link in the network. More specifically, the value D(¢) associated with link
{ € A is a measure of the total delay that data packets experience on that link,
including the queueing, transmission, and propagation components. Suppose now
that both links ¢ = (v,u) and ¢ = (u,v) exist for some v,u € V. Since, in practice,
communication networks can be asymmetric in nature, we allow link-delay functions
that assign different values to links ¢ and ¢, i.e., it is possible that D(¢) # D({').

Under the multicast routing scenario we are considering, packets originating at
some source node s € V in the network have to be delivered to a number of desti-
nations. We will call this set M C V — {s} of destination nodes the destination set
or multicast group, and will use m =| M | to denote its size (See Figure 3.1 for an
illustration). In general, several multicast sessions may proceed concurrently within
the network, each characterized by a source node and a destination set.

We assume that communication in the network is connection-oriented, and that



Figure 3.1: Graph G = (V, A), source node s, destination set M and the link-delay
function (D(s,v), D(s,w) and D(w,u))

multicast connections are established by issuing a connect request; similarly, at the
conclusion of a session a disconnect request is issued. In response to a connect request,
and prior to any data been transferred from the source to the destinations, a con-
nection establishment process is initiated. Central to the connection establishment
is the determination of routes between the source and the destinations, over which
data packets and acknowledgments will be carried for the duration of the multicast
session.

Let s and M be the source and multicast group, respectively, of a certain multicast
session. We assume that multicast packets for this session are routed from s to the
destinations in M via the links of a multicast tree T = (Vr, Ar) rooted at s. This tree
is constructed during the route determination phase of the connection establishment
process, based on information supplied as part of the connect request (more on this
shortly). The multicast tree is a subgraph of G/ (i.e., Vo C V and Ay C A) spanning s
and the nodes in M (that is, MU{s} C Vr). In addition, V7 may contain relay nodes,
that is, nodes intermediate to the path from the source to a destination. Relay nodes

are not consumers of multicast packets; rather, they simply forward these packets



along the downstream links of the multicast tree, and also forward acknowledgments
from the destination nodes towards the source, along the upstream links.

Let T be a multicast tree for the source-multicast group pair (s, M), and let
Pr(s,v) denote the unique path from source s to destination v € M in the tree 7.
Then, multicast packets from s to v experience a total delay of 3= ,cp,(5,) D(£) along
this path. We now introduce two parameters that can be used to characterize the
quality of the multicast tree as perceived by the application performing the multicast.
These parameters relate end-to-end delays along individual source-destination paths

to the desired level of quality of service, as follows.

o Source-destination delay tolerance, A. Parameter A represents an upper bound
on the acceptable end-to-end delay along any path from the source to a des-
tination node. This parameter reflects the fact that the information carried
by multicast packets becomes stale A time units after its transmission at the

source, and as such, it 1s of no value to the receivers.

o [nter-destination delay variation tolerance, 6. Parameter § is the maximum
difference between the end-to-end delays along the paths from the source to
any two destination nodes that can be tolerated by the application. In essence,

this parameter defines a synchronization window for the various receivers.

By supplying values for parameters A and 6, the application in effect imposes a
set of constraints on the paths of the multicast tree. The application will proceed
only if a tree satisfying these constraints can be found; otherwise, the application will
abort. In the following chapter we take a closer look at the problem of determining
multicast trees that guarantee a desired level of performance in terms of the quality

of service criteria discussed above.
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Chapter 4

Multicast Trees with Bounded
Delay and Delay Variation

In the previous chapter we have described the network model, which will be used
in the course of this paper. We now come to the part where we formally state the

problem, which is in the center of our study, and prove that it is N"P-complete.

4.1 Problem Description

Let A and 6 be the delay and delay variation tolerances, respectively, as specified
by a higher level application that wishes to initiate a multicast session. Our objective
is to determine a multicast tree such that delays along all source-destination paths in
the tree are within the two tolerances. This problem, which we will call the Delay-
and Delay Variation-Bounded Multicast Tree (DVBMT) problem, arises naturally as
a decision problem, and can be formally expressed as follows.

Problem 4.1.1 (DVBMT) Given a network G = (V. A), a source node s € V, a
multicast group M CV — {s}, a link-delay function D : A — R*, a delay tolerance

A, and a delay variation tolerance 6, does there exvist a tree T' = (Vp, Ar) spanning s

and the nodes in M, such that:

> D) < A VveM (4.1)

LePr(s,v)
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Y D- Y DO < 5 VYvueM (4.2)

L€ Pr(s) 6Py (s,)

We will refer to (4.1) as the source-destination delay constraint, while (4.2) will
be called the inter-destination delay variation constraint. We will also say that tree
T is a feasible tree for a multicast session with source s and destination set M, if and
only if T' satisfies both (4.1) and (4.2). Note that, in order for the multicast session to
proceed, it is necessary and sufficient that a single feasible tree be constructed, as any
feasible tree can meet the quality of service requirements as expressed by parameters
A and 6.

An interesting observation regarding constraints (4.1) and (4.2) is that they repre-
sent two conflicting objectives. Indeed, the delay constraint (4.1) dictates that short
paths be used. But choosing the shortest paths may lead to a violation of the delay
variation constraint among nodes that are close to the source and nodes that are far
away from it. Consequently, it may be necessary to select longer paths for some nodes
in order to satisfy the latter constraint. Then, the problem of finding a feasible tree
for DVBMT becomes one of selecting paths in a way that strikes a balance between
these two objectives.

The source-destination constraint (4.1) has been previously considered in the con-
text of designing constrained Steiner trees for real-time, interactive applications [4, 5].
To the best of our knowledge, however, our work is the first to explicitly consider
the inter-destination delay variation constraint (4.2) in the construction of multicast
trees. This should not, however, be taken to mean that the importance of providing
guarantees on the maximum value of the end-to-end delay variation has not been
recognized. In fact, as part of a recent study [6, 7] to evaluate the relative perfor-
mance of a large number of multicast algorithms and their suitability to high-speed
real-time applications, the following quantity was measured and used as a criterion
in the evaluation:

bro= max {| ZEP;(M) D(¢) ZEP;(M) D(¢) |} (4.3)
Quantity 67 is the maximum inter-destination delay variation in tree 7', and, given

a value for ¢, it can be used to determine whether tree T' can meet the quality of
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service requirements of the application. According to the study, none of the existing
algorithms provides good performance in terms of é7; this is not surprising, as none
of the algorithms considered in [6, 7] takes the delay variation constraint (4.2) into
account. Our work addresses the problem of designing multicast algorithms that

overcome this inefficiency.

4.2 Proof that DVBMT is N'P-complete

Before proceeding, we would like to resolve the open question regarding the ex-
istence of efficient algorithms for DVBMT. Unfortunately, the following theorem es-
tablishes that DVBMT is N'P-complete, implying that a polynomial-time algorithm
that determines a feasible tree for any arbitrary instance of this problem is unlikely to
be found. The proof uses a polynomial transformation from PARTITION problem,
which is known to be N'P-complete. PARTITION problem is restated here for the

sake of completeness (see [12] for more).

Problem 4.2.1 (PARTITION) Given a set of k elements S = {1,2,...,k} with
a; the weight of element i, and A = Y%, a;, does there exist a partition of S into
two sets, Sy and Sy, such thal Y ;cs a; = 3 jes, 0 = %? (The a;’s may be assumed

inleger.)
We are now ready to prove that DVBMT is indeed N'P-complete.

Theorem 4.2.1 DVBMT is N'P-complete whenever the size of the multicast group
| M[> 2.

Proof. It is easy to see that DVBMT is in the class NP, since a nondeterministic
algorithm need only guess a tree spanning s and the nodes in the destination set M,
and verify in polynomial time that the tree is a feasible one (i.e., that it satisfies both
(4.1) and (4.2)).

We now transform PARTITION to DVBMT; note that it is sufficient to find a
transformation for the case | M |= 2. Let S = {1,2,...,k} be the set of elements
of weights a;,2 = 1,...,k, making up an arbitrary instance of PARTITION, and let

b
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A = Y% a;. We construct an instance of DVBMT as follows (see Figure 4.1). The
network GG = (V, A) has n = k + 3 nodes, with V' = {s,v,u,ry,rq,..., 7}, where s is
the source node and M = {v,u} is the destination set. The set A of links is:

A = {(s,v),(s8,71),. .., (8y78), (r1,u)y .oy (Peyu), (P, r2), ooy (P11, 78),
(ro,r1), (r2,73)y ooy (P2 Th)y e ey (Phy 1)y ooy (Phy Tim1) } (4.4)

In other words, there is a directed link from s to v, one link from s to each node
r;, one link from each node r; to u, and one link from r; to rj,e,5 =1,..., k2 # J
(i.e., the subgraph of GG containing only nodes r;,i = 1,...,k, is a complete graph
on these nodes). As we can see, there is only one path from s to destination node v

consisting of the single link (s, v); however, a path from s to the other destination u

may contain any number of the nodes r;,2 = 1,..., k, and in any order (refer also to
Figure 4.1).
We now define the link-delay function D for this instance of DVBMT as:
%, if { = (s,v)
D) = 20, ifl=(z,u),zeV (4.5)

As a result of this definition, if the path from s to u passes through node r; for some

¢, then a delay equal to a; is incurred along the link that leads to r;. Finally, the

A
2

delay and delay variation tolerances are A = £, and § = 0, respectively.

It is obvious that this transformation can be performed in polynomial time. We
now show that a feasible tree exists for the above instance of DVBMT if and only if set
S has a partition. If S has a partition S, Sz, then S1 = {ax,, ..., ar } for some [ < k.
The tree consisting of path (s,v) and path (s,75 ), (Try, 75, )s -« oy (P Try )y (Frys 1),
is then a feasible tree for DVBMT, as the delay along both paths is equal to %.

Conversely, let T be a feasible tree for DVBMT. Then T must include the path

(s,v) of delay %, as this is the only path from the source to v. Let

(Sa T'my >’ (Tﬂ’l ) Tﬂrz)a ) (Tﬂ'l—l ) Tﬂ'l)’ (Tﬂ'l’ u) (4'6>

be the path from s to u on tree T. Since T' is a feasible tree and § = 0, the delay

along the latter path is equal to %, and | < k (for if [ = k, the path from s to
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Figure 4.1: Instance of DVBMT corresponding to an instance of PARTITION with
S ={1,2,3}

u would include all r;;2 = 1,...,k, and the delay along the path would equal A,
contradicting our hypothesis that T is a feasible tree). Then, S°'_, a,, = %, implying
that Sy = {ar,,....an}, S2 =5 — 51 # ¢, is a partition of S. O

The next chapter introduces a heuristic approach to determining feasible trees for

any arbitrary instance of DVBMT.
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Chapter 5

Multicast Tree Algorithms for
DVBMT

In the previous chapter we have formulated the problem, which we will will at-
tempt to solve. As mentioned before, due to the fact that the problem in question is
NP-complete, no polynomial algorithmic solution for it is likely to exist. Instead, we
use a heuristical approach. In this chapter we will describe several heuristics which
attempt to cope with the DVBMT problem. We will also prove their correctness and

analyze their time complexity.

5.1 Algorithm Description

Consider an application running at node s, and suppose that the application is-
sues a request for establishing a multicast connection with destination set M. Along
with the request, the application also supplies values for the path delay tolerance A,
and inter-destination delay variation tolerance ¢; these values reflect certain quality of
service requirements which the network must guarantee in order for the multicast ses-
sion to proceed. As part of the connection establishment process, upon receiving the
request, a multicast tree satisfying constraints (4.1) and (4.2) needs to be determined.
In this chapter we present algorithms that can be used to construct such a tree. Our

algorithms operate under the assumption that complete information regarding the
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network topology is stored locally at node s, making it possible to determine the
multicast tree at the source itself. This information may be collected and updated
using one of several existing topology-broadcast algorithms [13].

The sequence of actions taken by node s during the course of constructing a
multicast tree is illustrated in the flowchart of Figure 5.1, where we have assumed
that the values of the delay and delay variation tolerances A and 6, respectively,
provided by the application are negotiable '. As a first step, the tree of shortest
paths from s to all nodes in M is constructed; this can be achieved using Dijkstra’s
algorithm [14], which, for dense graphs with n nodes, takes time O(n?). Let Ty be
this tree of shortest paths. If Tj does not satisfy the path delay constraint (4.1) no
tree may satisfy it, implying that the delay tolerance A supplied by the application
is too tight; negotiation may then be necessary to determine a looser value of A.

Suppose now that the (original or negotiated) value of A is such that the delay
requirement (4.1) is met for tree Ty. If T also meets the delay variation requirement
(4.2) then Ty is a feasible tree for this instance of the DVBMT problem, and the
multicast session may take place over the tree of shortest paths. As a result, the
route determination phase completes successfully, and the connection establishment
process may then proceed to a subsequent phase (such as bandwidth reservation along
the paths of the tree, etc.).

On the other hand, it is possible that tree Ty fail to satisfy constraint (4.2). In that
case, our approach is to have the source execute a search algorithm in an attempt to
construct a new tree in which the delays along all source-destination paths satisfy both
(4.1) and (4.2). Based on the results of the previous chapter, however, an algorithm
that efficiently solves any arbitrary instance of DVBMT may not exist, meaning that
the search algorithm has to employ a heuristic approach. Nevertheless, suppose that a

heuristic algorithm is available, and that it returns a tree which constitutes a solution

! Using values for parameters A and § other than the ones recommended by the application may
result in a degradation of the quality of service as perceived by some or all of the receivers in the
multicast group. However, as long as the negotiated values do not differ significantly from the
original ones (in which case a basic grade of service can be guaranteed), it may be possible for the
multicast session to proceed. It is also conceivable that incentives to join the multicast session be
offered to receivers expected to experience a lower quality of service as a result of the network’s
inability to guarantee the initial requirements.
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Construct tree Ty such that the delay

from source s to each destination in M

is minimum

Negotiate with destinations

about the delay violation

A

Return T and stop

Y

Negotiate with destinations

about the delay variation violation

Run algorithm DVMAZ2

to obtain a new tree T'

A

Return T and stop

Figure 5.1: Flowchart of our approach to obtaining a multicast tree for the DVBMT
problem

to the given instance of the DVBMT problem; then a tree for the multicast session
has been found.

However, a heuristic algorithm may fail to discover a feasible tree, either because
no such tree exists or because of the ineffectiveness of the search strategy employed.
Other than abandoning the connection altogether, the only course of action available
to the application at that point would be to initiate another round of negotiations
in hope of determining a new value for the delay tolerance é§, one that would be
acceptable to all parties involved in the multicast session. If such a value can be
agreed upon the source would go through another iteration in the flowchart of Figure
5.1, otherwise the multicast session would have to be abandoned.

An alternative that would result in a considerable speed-up of the negotiation

process would be to design the search algorithm so that it always returns, among the
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trees considered, the one with the smallest value of 67 in (4.3). Indeed, regardless
of whether a solution to the given instance of DVBMT problem exists or not, the
tree corresponding to the smallest value of 67 is the best tree that can be obtained
with the search algorithm at hand. If this tree is available at the termination of the
algorithm, all that has to be determined during the negotiation process is whether an
acceptable level of quality of service can be sustained for the given value of 67 and
there is no need to repeat the route determination process; this is shown in Figure
5.1.

The following section presents DVMA, a new multicast tree heuristic designed
to solve the DVBMT problem. Following that, we show how the basic idea behind
DVMA can be used to develop a solution to the corresponding dynamic problem, i.e.,
the problem of updating the multicast tree in response to receiver requests for joining

or leaving an ongoing multicast session.

5.2 Delay Variation Multicast Algorithm (DVMA)

Let Ty be the tree of shortest paths from source s to the nodes in the destination
set M for the multicast connection under consideration. Let us also assume that
Ty meets the delay requirement (4.1), but that it does not meet the delay variation
requirement (4.2). The Delay Variation Multicast Algorithm (DVMA ), described in
detail in Figure 5.6, can then be used to search through the space of candidate trees
(i.e., trees spanning s and the nodes in M) for a feasible solution to the DVBMT
problem. DVMA either returns a feasible tree, or, having failed to discover such a
tree, it returns one which (a) satisfies the delay constraint (4.1) and (b) has the least
value of 67 among the trees considered by the algorithm. The basic idea behind the
operation of DVMA is now described.

Let M be the destination set, and assume for the moment that a feasible tree
T = (Vi,Ar) spanning s and a subset of M has already been determined. Let
U =M —(MnVy) be the set of destination nodes not in the tree T'; in other words,
no paths from the source s to the nodes in U have been determined yet. DVMA

operates by appropriately augmenting tree T' to eventually include all nodes in U; to
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this end, it repeats the following three steps as long as U # ¢:

1. Select a destination node v € U.

2. Find a “good” path from a node v € Vp to u that uses no nodes in Vp other

than v, and no links in A7; note that v could be the source node s.

3. Construct a new tree T’ by including all nodes and links of this path to the
initial tree T', and update U to exclude « and any other destination nodes along

this path.

The second step is crucial to the operation of DVMA, and warrants further ex-
planation. Recall that our objective is to construct a feasible tree that includes all
nodes in M, therefore a “good” path in Step 2 above is one which, if connected to
T in Step 3, the resulting tree 77 would be a feasible tree for the subset of the set
of destination nodes it contains. In order to find such a path, we construct the /
shortest paths from a node v of T' to u. The graph used to find these paths is created
by excluding all nodes of T other than v, and all links of T" from the original graph
(. The exclusion of these nodes and links from G guarantees that connecting any of
the [ paths so constructed to T" will not create a cycle.

It is possible, though, that none of the [ paths from v to u will yield a feasible
tree. For this reason, we repeat the process for all nodes v € Vi in an attempt to find
a “good” path between any v € Vr and u. Even so, the algorithm may still not be
able to find such a path; for instance, a feasible tree for this destination set may not
exist in the first place. Recall, however, that we would like the algorithm to return
the best tree (in terms of maximum inter-destination delay variation) it can find. We
now modify our definition of a “good” path so that, if a path yielding a feasible tree

T" can not be found, a “good” path is one which

(a) the total delay from s to u (i.e., the delay from s to v in T, plus the delay from
v to u over the path) is at most A, and

(b) the tree T" created by connecting this path to 7" has the least value of maximum
delay variation among the trees constructed by connecting the other paths to

T.
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In essence, the purpose of the greedy rule (b) above is to prune the search space, i.e.,
to prevent certain candidate trees from receiving further consideration.

The only question that remains to be answered then, is how an initial tree T},
is constructed. To answer this question consider Tj, the tree of shortest paths, which,
by hypothesis, does not satisfy the delay variation constraint (4.2). Let w be the
destination node with the longest path in this tree. Since it is not possible to make
the delay from s to w any smaller than the delay incurred over the path from s to w
in T, the only alternative to constructing a feasible tree is to find longer paths from
s to some or all of the other destination nodes. Hence, our approach is to start with
an initial tree T' consisting only of the shortest path from s to w, and repeat the three
steps described above to create a feasible tree that will include all other destination
nodes.

To complete the description of the search strategy employed by DVMA, note that
it is possible that no feasible tree for the given destination set includes the shortest
path from s to w. However, if a feasible tree exists, it will contain some path from
s to w. Therefore, if the process of constructing a feasible tree starting from the
shortest path from s to w fails, the second shortest path from s to w is considered as
the initial tree and the process is repeated. Figure 5.2 shows the initial tree Tiizia
which consists of one path, from s to w - the farthest destination in 7. The set U
of yet unconnected destinations consists of all members of the original set M with
the exception of node w and destination nodes that “accidentally” ended up on the

path from s to w. In other words U = M — V.

i Our search for a feasible tree
terminates when one is found, or when trees based on the first & shortest paths from
s to w have been constructed, whichever occurs first. In the latter case, the algorithm
will return the tree with the smallest value of 67 in (4.3).

The three main steps performed by the algorithm are reflected in Figures 5.3, 5.4
and 5.5. In Figure 5.3 we see the partially built tree T' and the node u € U - not yet
connected to T'. Figure 5.4 demonstrates the selection of a “good” path from node v,

already in the tree T, and node u. The algorithm has a choice of at most [ paths to

make the selection from. The new tree T, which includes u, is shown in Figure 5.5.

The details of the algorithm (DVMA) can be found in Figure 5.6.
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Tinitial

Figure 5.2: The initial tree Tj,;141 consisting of a path from s to w and the set

U:M—VT

wnitial

of unconnected destinations

Figure 5.3: The partially-built tree T', graph G and node v € U, U = M — (M N Vr)
(Step 1)
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Figure 5.4: The path to v — u is being selected among the [ shortest paths between
v and v in G'(Step 2)

Figure 5.5: The new tree T" after the addition of node u, new set U of still unconnected
destinations (Step 3)
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Delay Variation Multicast Algorithm (DVMA)

The algorithm is executed if Ty, the tree of shortest paths, satisfies constraint (4.1) but

does not satisfy constraint (4.2). We let w € M be a node such that 2tePr (s,0) D) =
maXyem {ZZEPTO (s,v) D(f)}

1.  begin
Let T =Ty // T is the tree returned by the algorithm
Find the first k& shortest paths from s to w in the original graph G = (V, A),

such that the delay from s to w over these paths is less than A;

label these paths py,...,pp in increasing order of delay
4, fors=1to k do // construct a multicast tree T; for each path p;
5. Initialize T; = (V;, A;) to include all the nodes and links of path p;;
obviously, s,w € V;
6. Let U =M — (M NV;) be the set of destinations not yet connected

to the tree 71;

while U # ¢ do

Pick any node u € U // will connect u to the tree T;
9. for each node v € V; do // find a path from v to u
10. Construct a new graph G’ starting with the initial graph G and excluding

all nodes in V; — {v}, all links in A;; also exclude all nodes in U — u and

all arcs associated with them

11. Find the first / shortest paths from v to u in the new graph G’

12. Of these [ paths choose the best one (as described in Section 5.1)
and call it ¢,

13. end of for each node v € V; loop

14. Select the best path ¢ among all paths ¢,,v € V; (as in Step 12 above)

15. Update T; = (V;, A;) to include all nodes and links in path ¢

16. Update U = U — u // node u has now been connected to T;

17. end of while loop // construction of tree T; has been completed

18. If tree T; satisfies constraint (4.2) return 7; and stop

19. Let T be the tree among 7" and 7; with the smallest value of 67 in (4.3)

20. end of for ¢ loop
21. return T // no tree satisfied the inter-destination delay variation constraint

22. end of the algorithm

Figure 5.6: Heuristic algorithm for the DVBMT problem
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5.3 Correctness and Complexity Analysis of DVMA

The correctness of DVMA is provided by the following lemma. Note, however, that
although the algorithm returns the best tree, in terms of maximum delay variation,
that it can find, because of its heuristic nature it may fail to discover a feasible tree

for the given value of ¢ even if one exists.

Lemma 5.3.1 (Correctness of DVMA) Algorithm DVMA returns a tree T span-
ning s and all nodes v € M. The tree T satisfies constraint (4.1), and either satisfies
constraint (4.2), or is the one with the smallest value of 67 in (4.3) among the trees
considered by the algorithm.

Proof. We will first show that the algorithm returns a tree 7' spanning s and the
nodes in M. If DVMA returns Ty, there is nothing to prove. Otherwise, T is one
of the T;’s constructed during one iteration of the loop that starts at line 4. T is
initialized to some path p; at line 5; clearly, at this point T is a tree containing the
source s and at least one more destination w € M. New nodes and links are added
to T in line 15, where a new path ¢ from a node in v € Vz to anode u € M, u & Vr is
incorporated. The resulting new graph is a tree as path ¢ cannot contain any nodes
or links of T" other than v itself. Indeed, all other nodes and links of T" were removed
at line 10, before path ¢ was determined. The new tree T has at least one more node,
u € M; since s was in the tree initially, no nodes are ever removed from 7', and paths
are added to it until all destinations in M are in T', our first claim is true.

That the delay constraint (4.1) is satisfied by the final tree T' is now is easy to
see. If T'= T, this is true by hypothesis; if T' # Tj this is also true as no path is
ever added to any tree T; unless the delay constraint is satisfied (refer to lines 3 and
12). Finally, if the algorithm terminates at line 18, the tree returned is a feasible one;
otherwise, line 19 guarantees that the tree returned is the one with the smallest value
of 67 among the ones constructed during the execution of the algorithm. O

The next lemma determines the running time complexity of DVMA.

Lemma 5.3.2 The worst-case complexity of DVMA is O(kimn?), where k is the
number of paths generated at line 3 of Figure 5.6, | the number of paths generated
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at line 11, m =| M | is the number of destinalions in the multicast group M, and

n =| V| is the number of nodes in the network.

Proof. The running time of DVMA is dominated by the iteration between lines 4
and 20; this outer loop is executed at most £ times. During one iteration of the
outer loop, the “while” loop at line 7 is executed at most m — 1 times. Let ¢; be the
number of nodes in the tree during the j-th iteration of the “while” loop. Then, the
innermost loop starting at line 9 will iterate ¢; times; inside this loop the complexity is
determined by the [-shortest path algorithm at line 11, which takes time O(IN?) [15]
for a graph with N nodes. Graph G’ has n —{; + 1 nodes throughout the innermost
loop; the latter then takes time proportional to lt;(n —t; +1)°. For a worst case
analysis, we let ¢;, for all iterations j, take the value that maximizes the quantity
t;j(z —1;)?, where x = n+ 1. It is straightforward to show that for this value of ¢; the
complexity of the innermost loop becomes O(In*). After accounting for the “while”
and outer loops, we conclude that the overall complexity of the algorithm is, in the
worst case, O(klmn?). O

Regarding parameters k and [, note that the maximum value they can take is, in
the worst case, equal to the maximum number of paths of delay at most A between
any two nodes in the network. If A is not very loose, we expect the maximum value of
both k and [ to be a small constant. The actual values of k& and [ were left unspecified
in the description of the algorithm, as in any particular implementation they will be
determined by the desired compromise between the quality of the final solution of the

algorithm and its speed.

5.4 A Family of Algorithms for DVBMT

The algorithm for minimizing the delay variation of the multicast tree in fact
comes in two “flavors”: DVMA, which was described above and another one which
we called DVMA2. DVMAZ2 differs from DVMA only in two steps: step 10 and step
16 in Figure 5.6. Graph G’ is formed by excluding only nodes in V; — v and all links
in A; (not excluding all nodes in U — u). In step 16, the set U of yet unconnected



26

destinations has to be updated more carefully than just by removing u from it: since
we didn’t remove other destinations from the original graph, some of them may have
inadvertently ended up on the new path, linking u to the tree. Therefore, Step 16
should read: U = M — (M NV;). Otherwise DVMAZ2 performs exactly as its “sibling”.

In addition, we have attempted to improve the performance of DVMA by making
it more greedy. This new heuristic instead of simply adding destinations to the tree
in an arbitrary order, as DVMA does, in one iteration finds “good” paths for all so
far unconnected destinations in U, and then connects the destination whose path is
the “best” among all “good” paths (using the same criterion as in the selection of a
“good” path for a particular destination). This added complexity costs an extra m
factor in the time complexity estimate, making it O(klm?n*).

This heuristic also comes in two “flavors”, differences between which are the same
as the differences between DVMA and DVMAZ2. Surprisingly, the added complexity
does not pay off in the performance. Comparisons of the average performance of these
new heuristics (we will call them DVMAv2 and DVMA2v2) and the DVMA family
showed no significant improvement in the quality of the routing tree (See Chapter 7

for numeric results).

5.5 Summary

We have just described several heuristics which attempt to solve the DVBMT
problem. We saw that the same idea can be used to produce a variety of heuristics.
We will see the performance comparison of these heuristics in Chapter 7. In the next
chapter we will show that the same approach, that we used in these static heuristics,
can be used to produce a heuristic that will allow nodes to join and leave the multicast

group dynamically, after the connection has already been established.
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Chapter 6

Dynamic Reorganization of the

Multicast Tree

In Chapter 5 we presented DVMA, an algorithm that can be used during connec-
tion establishment to construct a feasible tree for a given destination set. For certain
applications, however, it is conceivable that nodes join or leave the initial multicast
group during the lifetime of the multicast connection . More specifically, we as-
sume that nodes currently in the multicast group may leave the group after issuing
a leave request LEAVE(u). Similarly, nodes that wish to join an ongoing multicast
session must first issue a join request JOIN(u). Under such a scenario, it is necessary
to dynamically update the multicast tree in response to changes in multicast group
membership, in order to ensure that constraints (4.1) and (4.2) are always satisfied
for the current destination set.

Let T' be the multicast tree of an ongoing multicast session with destination set M,
and suppose that as a result of a join or leave request the new destination set is M’.
One possible approach to this dynamic version of the DVBMT problem ? would be to

run DVMA anew to obtain a feasible tree T" for set M’, and, following a transition

period, use the new tree for routing subsequent packets of this session. Note that there

'For instance, teleconferencing is an application where the ability to dynamically add or drop
parties is highly desirable.

2 As opposed to the static version we have considered so far, whereby all the destinations in the
multicast group are known in advance.
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Figure 6.1: Vertices r and v have left the multicast group

is a certain overhead associated with this approach, including the computational cost
of running DVMA, and the cost of the network resources involved in the transition
from T to T' (i.e., the cost of tearing down old paths and establishing new ones).
Since the new tree T' can be significantly different than 7', this overhead can be very
high. Furthermore, such a radical approach may cause receivers totally unrelated to
the destination nodes added or deleted to experience disruption in service. All these
drawbacks make the strategy just described inappropriate for real-time environments
and applications where frequent changes in the destination set are anticipated.

We now adopt a different strategy, one that attempts to minimize both the cost
incurred during the transition period, and the disruption caused to the receivers.
More specifically, the multicast tree is never modified unless it is absolutely necessary
to do so. Even then, the new tree is not computed from scratch, rather, a feasible
tree for the new multicast group is constructed by making incremental and localized
changes to the old tree. We now describe in detail how the join and leave requests

are handled under our approach.
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6.1 Handling /ecave Requests

Let us first consider leave requests, and assume that node v € M decides to end its
participation in the multicast session. If v is not a leaf node in the current multicast
tree T' no action needs to be taken. The new tree T' can be the same as T', with
the only difference being that node v will stop forwarding the multicast packets to its
local user. If, however, v is a leaf node of T', and in order to avoid wasting bandwidth,
tree T has to be pruned to exclude v and, possibly, relay nodes and links used in T
solely for forwarding packets to v. The new tree T" is essentially the same as T' except
in parts of the path from the source to v. Both these cases are depicted in Figure 6.1.
Notice that since node v was a leaf, the tree was pruned up to the nearest junction
point at node y. Node r on the other hand, has simply stopped forwarding multicast
packets to its local client, without causing any changes in the tree structure. We
conclude that leave requests are easy to handle, and no destination node (other than
v, the node leaving the session) needs to notice any difference in terms of the multicast

session.

6.2 Handling join Requests

Let us now turn our attention to the actions taken whenever a node v ¢ M
announces its intention to join the multicast group. We distinguish three cases, as

follows.

o u & Vr, i.e., the new node is not part of the multicast tree T'. Our approach is
to augment 7' to include a path from a node V' € Vr to the new node u. This
can be easily accomplished by letting T; = T" and U = {u} at lines 5 and 6,
respectively, of DVMA (see Figure 5.6) and executing the code between lines
7 and 17 to search for a path that would result in a feasible tree for the set
M U {u}. Hence, the transition phase involves only the establishment of a new
path and does not affect any of the paths from the source to nodes already in

the multicast group, allowing the connection to proceed smoothly and without
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Figure 6.2: Paths to destinations which are in W will change

any disruption ®. The time complexity of this part, determined similarly to

Lemma 5.1.2 is O(In*).

o u € Vp,ie., uis arelay node of T', and the path from the source node s to u is
such that the delay variation constraint (4.2) is satisfied for the new multicast
group M’ = MU{u} *. Tree T is then a feasible tree for the new set M’, and can
be used without any change other than having node u now forward multicast

packets to its user, in addition to forwarding them to the downstream nodes.

o u € Vp, but the path from s to u is such that the delay variation constraint
(4.2) is not satisfied for the new set M U {u}. Consequently, a longer path from
s to u has to be found. Let W C M be the destination nodes in M that are
downstream of u (i.e., those destination nodes in the subtree of T' rooted at u).
Finding a new path from s to u will definitely affect the paths to these nodes,
however, the paths to nodes in M — W need not be affected. Let T} be the tree

T after excluding its subtree rooted at u (this is depicted in Figure 6.2). Our

31f executing this piece of code fails to discover such a path, there are two possible courses of
action: (a) run DVMA from scratch for the new multicast group, or (b) deny node u its participation
in the multicast session; which course of action to be taken may depend on several factors, such as
the nature of the application, the cost of rerouting the connection, etc.

“Note that the path from s to u will necessarily satisfy the delay constraint (4.1), as u cannot be
a leaf node of T
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approach then is to let T; = Ty and U = W U {u} at lines 5 and 6, respectively,
of DVMA in Figure 5.6. We then execute the code between lines 7 and 17 to
connect the destination nodes in U into tree T;. As a result, packets will be
routed from s to the nodes in W over new paths in the final tree T”, but none
of the paths to nodes in M — W will change. The worst case time complexity
of this part is O(Imn?).

As a final observation, besides being minimally disruptive, this approach has the
additional advantage that the algorithm used during set-up time to construct an initial
tree for the multicast connection, can also be used to reorganize the tree during the

lifetime of the session.
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Chapter 7

Numerical Results

7.1 Performance of DVMA Family of Algorithms

We now consider five different algorithms that can be used to construct multicast
trees for a given source and destination set, and compare their performance in terms
of the maximum delay variation é7 among the source-destination paths in the final

tree T, as defined in (4.3). The five algorithms studied are:

1. DVMA, the algorithm described in Figure 5.6. We run this algorithm with
A = 0.05s and 6 = 0. This value of 6 was used in order to force the algorithm
to go through all possible iterations of the outer for loop and return the tree
with the smallest value of 67 it can find. This last value represents the tightest

delay variation tolerance for which a tree can be found using DVMA.

2. DVMAZ2, an algorithm very similar to DVMA (see Chapter 5); The values of

parameters A and 6 used are the same as for DVMA above.

3. Dijkstra’s algorithm [14] which constructs the shortest paths from the source
to any node in the network. The resulting tree is pruned to exclude paths that
do not terminate at a destination node, and will be referred to as shortest path

tree (SPT).
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4. Prim’s algorithm [16] which constructs a tree of minimum weight spanning all
nodes in the network; in our case, the weight of each link is the delay incurred
along the link. This minimum spanning tree (MST ) is also pruned, as discussed

above.

5. The tradeoff algorithm between the minimum spanning tree heuristic * for the
Steiner tree problem [17] and SPT, as presented in [18]. The algorithm operates
as follows. First a tree is constructed using the heuristic ?; then the destinations
with the largest difference between the delay of their shortest path and the
delay of their path in this tree are found, and the tree paths are replaced by
the shortest paths from the source to those destinations. This algorithm (which
we will call TDF) is studied because it was conjectured in [6] that it may yield

good results in terms of maximum inter-destination delay variation.

We are interested in studying the average case behavior of the five algorithms. To
this end, we have generated random graphs for a wide range of values for the total
number n of nodes, the average degree of each node, and the number m of destina-
tions in the multicast group as a percentage of n. These graphs were constructed
to resemble real-world networks using the method described in [19]; the nodes of the
graphs were placed in a grid of dimensions 4900 x 4900 Km * (roughly the size of the
continental United States), and the delay along each link was set to the propagation
delay of light along that link . The random networks were then fed as input to each
algorithm, and the maximum inter-destination delay variation 67 of the final tree was
computed as in expression (4.3). All figures in this chapter plot 67 against the number
of nodes n in the network, for the five algorithms discussed above. Each point plotted
represents the average over three hundred different graphs for the stated values of n,
m, and the average degree of each node. In addition to the mean estimates for the

delay variation, we present the 95% confidence intervals of these estimates.

!Not to be confused with Prim’s algorithm for constructing an MST.

2The delay along each link is used as the cost of the link.

3Hence, the value of A = 0.05s corresponds to the time it would take light to travel, at a speed
of 2 x 108m/s, over a distance approximately equal to 1.5 times the diameter of this square.

4Note that, unless the links operate at or close to their capacity, propagation delays are expected
to dominate over queueing and transmission delays in a high-speed environment.
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We first consider networks with average nodal degree equal to 2.5. The results
shown in Figures 7.1 - 7.4 correspond to multicast groups of sizes equal to 5%, 10%,
15%, and 20% of the total number of nodes in the network, respectively ®. From these
figures we can make the following observations regarding the relative performance of
the five algorithms. The trees constructed by DVMA and DVMAZ2 have a maximum
delay variation that is always smaller than that of the SPT, TDF, and MST trees.
Furthermore, DVMA outperforms DVMAZ2 in most cases shown. A plausible expla-
nation for this fact would be that the small change in the way graph G’ is constructed
at line 10 of the algorithms allows DVMA to explore a larger number of candidate
paths and discover a better overall solution. On the other hand, the MST is by far
the worst tree in terms of é7; this is expected as Prim’s algorithm minimizes the total
weight of the tree, without paying any attention to the individual source-destination
paths. The tree of shortest paths SPT results in values of ér that are between those
of the MST and those of the DVMA and DVMAZ2 algorithms. Note that, in this tree,
the value of 67 is determined by the difference between the delays along the paths
to the destinations that are closest and farthest away from the source. Finally, the
tradeoff algorithm TDF constructs trees with maximum delay variation larger than
that of SPT, a result that is in contrast to the expectations expressed in [6].

Let us now turn our attention to how the size m of the multicast group relative to
the size n of the network affects the performance of the algorithms. From Figure 7.1
where m is a small percentage (5%) of n, we can see that the DVMA and DVMA2
trees represent an improvement of roughly an order of magnitude over the SPT and
TDF trees. As m increases as a percentage of n, the magnitude of improvement
decreases, as seen in Figures 7.2, 7.3, and 7.4 which show results for m equal to 10%,
15%, and 20% of n, respectively (however, even in Figure 7.4 with m = 0.2n, DVMA
constructs trees which, on the average, have a value of 67 at least 16% lower than
that of SPT). This behavior can be explained by noting that the smaller the size of
the multicast group, the easier it is for DVMA and DVMAZ2 to find alternative (i.e.,
longer) paths for the nodes physically closer to the source. At the other extreme,

5There is no point plotted in Figure 7.1 for n = 20 as in this case a multicast group of size 0.05n
contains only one node, and the quantity é7 is not meaningful.
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when m = n (a broadcast scenario) it is easy to see that no tree can do much better
than SPT in terms of the maximum delay variation. In fact, as the trend in Figures
7.1 - 7.4 suggests, when the size of the multicast group is larger than 25-30% of n, it
makes sense to simply use the SPT, as running DVMA or DVMAZ2 would not yield
a significant improvement in terms of é7. In a typical multicast scenario however,
the size of the destination set for any single session would be small compared to the
total number of nodes (especially for large networks); it is in these situations that the
algorithms presented here would really make a difference in terms of the maximum
delay variation of the final tree.

Finally, Figures 7.5 and 7.6 investigate how the value of o7 for the various trees
changes as a function of the average nodal degree. By comparing these figures to
Figure 7.1 which presents plots for the same size of destination set (m = 0.05n), we see
that for the DVMA and DVMAZ2 trees 6 decreases dramatically as the average nodal
degree increases from 1.5 (Figure 7.5) to 2.5 (Figure 7.1) and then to 4 (Figure 7.6).
This is a result of the fact that a higher nodal degree translates into a larger number
of paths between any two nodes, and a larger number of trees for our algorithms to
choose from. Another important observation is that for an average nodal degree equal
to 4, both of our algorithms are able to construct trees with § ~ 0, independently of
the number of nodes in the network. As such, these trees would be able to meet the
delay variation requirements of even the most demanding applications. The behavior
of the other algorithms is not significantly affected by the nodal degree, as none of
these attempt to optimize in terms of ép. In SPT, for instance, ér is determined
by the relative distance of the various destinations from the source, which is almost
independent of the nodal degree.

Overall, the results presented in this chapter suggest that DVMA and DVMAZ2
achieve their best performance under conditions that are typical of multicast applica-
tions running in high speed networks, namely, when (a) the size of the multicast group
is relatively small compared to the total number of nodes in the network, and/or (b)

the number of incoming/outgoing links at each node is relatively large.
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delta T

0.06

0.05

0.04

0.03

0.02

0.01

DVMA ——
DVMA2 -& -
% SPT -&--
" g MST o~ 7
TDF 8-
L % 4
. L .
L A i
/‘/_,1}/"'
B
B e
20 40 60 80 100 120

Number of Nodes

Figure 7.2: Algorithm comparison for networks with average node degree equal to

2.5, and multicast group size equal to 10% of the number of nodes



37

0.06 : :
$  DVMA -—
, DVMA2 &
} SPT -&-
0.05 MST o 1
TDF -&--
0.04 | % ; 1
- A E
£ 003t .
k] r‘ .
0.02 | |
0.01 -
0 L L L L L
20 40 60 80 100 120

Number of Nodes

Figure 7.3: Algorithm comparison for networks with average node degree equal to
2.5, and multicast group size equal to 15% of the number of nodes

0.07 :
DVMA ——
DVMA2 =
0.06 | 4 SPT & |
MST o
TDF &
0.05 | 1
0.04 | 1
e 3 4
3 E
° o003 7 1
0.02 1
001 b 1
0 1 1 1 1 1
20 40 60 80 100 120

Number of Nodes

Figure 7.4: Algorithm comparison for networks with average node degree equal to
2.5, and multicast group size equal to 20% of the number of nodes
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Figure 7.6: Algorithm comparison for networks with average node degree equal to 4,
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7.2 Selection of Parameters £ and [

In Chapter 5 we established that the complexity of DVMA is O(klmn*). Recall
that k& is the total number of paths between the source s and the farthest destination
node w, that are calculated. Parameter [ is, similarly, the total number of paths that
are calculated between some node v of the partially-built tree T', and the destination
u € U that is currently being connected to the tree T. However, in the description
of the algorithm, the values of k£ and [ were left unspecified. In general, the choice of
particular values will be a compromise between the quality of the final tree (in terms
of maximum delay variation é7) and speed.

We now show how the values of & and [ were selected for the performance eval-
uation described in this chapter. A comparison of performance of DVMA family of

algorithms under different values of k and [ revealed the optimal values to be:
o k=3n
o l/l=n

The data that motivated the selection of k is presented in Figure 7.7. The algo-
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Figure 7.8: Performance comparison between DVMA and the higher complexity
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rithms were executed with different values of £ on 100 random graphs with 100 nodes
and 10 destinations. The average maximum delay variation 67 was recorded. Tt is
clear from this figure that when the value of k£ has reached 3n, the average maximum
delay variation stopped decreasing. This means that most of the time a tree with
a minimum 67 can be found among the trees, built on the first 3n shortest paths,

connecting source s to destination w. The optimal value for [ was attained similarly.

7.3 Performance of Higher Complexity Heuristics

In Chapter 5 we have mentioned an attempt to improve the performance of the
DVMA family of heuristics by increasing their complexity. The two higher complexity
heuristics, which we will call DVMAv2 and DVMA 202 were tested against DVMA and
DVMAZ2 on a series of random graphs. As in section 7.1, the graph size varied from
20 nodes to 100 nodes; the average nodal degree was 2.5. The comparative data for
DVMA and DVMAv2 from 100 graphs was averaged, and is presented in Figure 7.8
(with 95% confidence intervals).
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It is not hard to see that the performance of DVMA©v2 is not significantly better
on the average, than that of DVMA. In fact, the presented 95% confidence intervals

for the mean estimates intersect.

7.4 Performance of the Dynamic Algorithm

Our final set of data refers to the performance of the dynamic algorithm, described
in Chapter 6. Recall that the algorithm consists of two separate operations on node
u € G: JOIN(u), when node v wants to join a multicast session, and LEAVE(u),
when u wants to leave the current session(tree). Recall also that JOIN(u) has three

special cases:
1. u € Vr - node u is not part of the current multicast routing tree T'

2. u € Vr - node u is a relay node in the tree T" and its addition to the multicast

group does not violate the maximum delay variation ér

3. u € Vr - node u is a relay node in the tree T and its addition to the multicast

group violates ot

As with the DVMA algorithms, we were interested in the average behavior of the
dynamic algorithm. Tests were set up as follows: after creating an initial tree T
from a random graph using algorithm DVMA, a sequence of join/leave operations
was performed on that tree. The choice of whether a join or a leave operation was
performed at a given moment was random, governed by the Bernoulli distribution
(e.g., 50 or 75 percent of all operations had to be join operations). After the op-
eration was performed, the maximum delay variation of the new tree was measured
and recorded. In addition, the current set of destinations was updated after every
operation, and after the update, the DVMA algorithm was run on this new set, so
that the “optimal” delay variation value from this algorithm could be compared to
the delay variation value produced by the dynamic algorithm. Both these values were
averaged over 100 random graphs with 100 nodes and 10 multicast destinations each

(as before, we also present the 95% confidence intervals for our mean estimates). All
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graphs had an average nodal degree of 3. A total of 10 join/leave operations was
performed on each tree.

In our experiments we have varied the percentage of join operations over the total
number of operations performed. We have studied the cases of 50, 75 and 100 percent,
the latter consisting only of join requests. The resulting data is presented in Figures
7.9 (50/50 mix of join/leave operations), 7.10 (75/25) and 7.11 (100/0).

The dynamic algorithm behaves as one would expect - the resulting new tree has
the maximum delay variation greater than that of a tree created “from scratch”.
With 50/50 mix of join/leave operations the average maximum delay variation of
the trees after 10 operations was 2.73 times larger than “optimal” (rather, smallest
attainable with DVMA). In 75/25 this ratio fell to 2.33, and with 100/0 it became 1.64.
This could be explained by the fact that the dynamic algorithm employs a minimal
disruption approach, which causes the tree to “deteriorate” over the time. Since the
leave operations do not cause the tree to reshuffle, there is usually little improvement
in the value of ér after a leave operation. At the same time, an algorithm, run
“from scratch” finds a better solution, working with a smaller set of destinations. On
the other hand, join operations almost always cause the value of é7r to increase both
when the dynamic algorithm is executed and when the DVMA algorithm is run on the
enlarged destination set. For these reasons, the smaller the share of leave operations
in the total number performed, the closer the performance of the dynamic algorithm
to the optimal.

The average behavior of the dynamic algorithm is not indicative of some particular
cases. For instance, we have observed some cases, where the value of ér of the
multicast tree has improved after a join operation. This happens when the node,
which wants to join the tree, is already a relay node of the existing multicast tree
and is located close to the source (the last case for the join operation in Chapter
6). If the addition of the node to the multicast group causes the 67 of the tree
to deteriorate beyond the specified constraint, all members of the multicast group,
which are positioned downstream from the new node in the tree T', will have to be
reconnected. This causes a major “reshuffling” of the tree and in some cases results

in an improvement of the value of ér.
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Figure 7.11: Performance of the dynamic algorithm compared to the optimal with

100/0 join/leave mix

It should be noted, that despite the fact that routing trees calculated by the

dynamic algorithm are not as good as the ones, calculated “from scratch”, their max-

imum delay variation is still much lower than that of other algorithms we considered

(TDF, SPT, MST), and is attained at a lower cost, than if they were calculated by

DVMA.
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Chapter 8

Summary and Future Work

8.1 Summary

We have considered the problem of determining multicast trees that guarantee
certain bounds on the end-to-end delays from the source to the each of the destination
nodes, as well as on the variation among these delays. The bounds are directly related
to the quality of service requirements of the higher level applications performing the
multicast. After establishing that the problem of constructing such constrained trees
is N'P-complete, we developed heuristics that exhibit good average case behavior.
Our heuristics perform especially well under conditions typical of multicast scenarios
in high-speed networks, namely, when the network is not too sparse, and when the
number of destination nodes is relatively small compared to the total number of nodes.

In addition we have shown that the strategy employed by the heuristic is applicable
to the problem of reorganizing the tree in response to changes in multicast group
membership. The resulting dynamic algorithm also performs well in scenarios which

model real-life connections.

8.2 Future Work

Our work can be extended in several directions. Recall that our algorithms do

not attempt to optimize the tree in terms of cost; in fact, since their strategy is to
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choose longer paths for some of the destination nodes, the cost of the final tree may
be somewhat high. One straightforward approach to dealing with cost is to modify
our algorithms to seek the least cost path among the candidate paths they consider,
and/or the least cost tree among all feasible trees they construct. However, this issue
warrants further investigation.

Another area of possible research which has not been widely investigated, is the
construction of multicast trees for multipoint-to-multipoint connections. Under this
scenario any node belonging to the multicast group can send multicast messages to
the rest of the group. The transmitting node expects that the network will provide
it with an acceptable quality of service level (in our case - bounded delay and delay-
variation). An obvious (and inefficient) solution would be to run DVMA algorithm
for every node in a multicast group as a source, since in our work we considered
delay variation and delay in the tree only from the point of view of the source node.
This approach would create one multicast tree per member of the multicast group
which would be wasteful in terms of network resources. A different approach would
be to create a single routing tree which will attempt to satisfy the quality of service
requirements of all members of the multicast group. Whether this approach is a

feasible one, remains to be seen.
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