
ABSTRACT

CASTILLO, CLARIS. On the Design of Efficient Resource Allocation Mechanisms for Grids.
(Under the direction of Dr. George Rouskas and Dr. Khaled Harfoush).

In this thesis we consider the problem of providing QoS guarantees to Grid users

through advance reservation. Advance reservation mechanisms provide the ability to allocate

resources to users based on agreed-upon QoS requirements and increase the predictability of a

Grid system, yet incorporating such mechanisms into current Grid environments has proven to

be a challenging task due to the resulting resource fragmentation. In view of these observations

we have devised efficient scheduling algorithms that support advance reservations. We can

organize this thesis in two parts.

We first use concepts from computational geometry and efficient data structures to

present a framework for tackling the resource fragmentation, and for formulating a suite of

scheduling strategies. We also develop efficient implementations of the scheduling algorithms

that scale to large Grids. We conduct a comprehensive performance evaluation study using

simulation, and we present numerical results to demonstrate that our algorithms perform well

across several metrics that reflect both user- and system-specific goals.

Advance reservations has also been proposed as one mechanisms to provide Grid re-

source managers with the ability to co-allocate resources. Co-allocation of resources is one

problem that has gained increasing attention due to the emergence of complex applications that

require orchestration of resources never envisioned before. In practice, a co-allocation request

can be handled manually as a set of individual advance reservations requests. However, such

a solution can be computationally expensive and inappropriate for time-sensitive applications.

Furthermore, the trend towards more dynamic solutions has emphasized the need for more au-

tomatic solutions. As a second contribution, in this thesis we design and develop a co-allocation

algorithm that is efficient in co-allocating resources while respecting the atomicity of the co-

allocation request and improving user and system performance. This is achieved by quantizing

the temporal space and using efficient 2-dimensional balanced search trees. We perform a com-

parative analysis of our algorithm by means of simulations driven by workloads from real systems

and show that our algorithm scales to Grid systems with large number of resources and heavy

workloads.
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Chapter 1

Introduction

1.1 QoS in Grids

Much progress has been made in Grid technologies. Grids have become the de-facto

computing infrastructure for research institutions and Industry. Moreover, the advances made

in resource virtualization and service technologies have enabled a new broad range of complex

applications and computing paradigms never envisioned before. For instance, Amazon Elastic

Computing Cloud [1] allows users to obtain and configure computational capacity, providing

them with complete control of the computing resources and a fully proven virtual environment.

Quality of Service (QoS) is one aspect that is fundamental to the full realization of

these emerging applications. In practice, however, most Grid infrastructures offer limited QoS

support. This state of affairs has its root mainly in historical and technical reasons. First, Grid

development was initially driven by the need of aggregating resources in a cost-effective way,

thus leaving QoS support as a secondary consideration in their design. Second, the complex

nature of Grid environments imposes several technical challenges that hinder the development

of QoS-support techniques.

One scheduling mechanism that has been proposed to provide for QoS in Grids is

advance reservations. Advance reservations capabilities have gained increasing interest in the

Grid community due to their ability to increase the predictability of the system, enable the

co-allocation of resources and provide availability guarantee of resources to applications. Nev-

ertheless, several arguments have made their development and adoption difficult. (1) Advance

reservations have shown to cause severe system performance degradation; (2) typical advance

reservation mechanisms lack flexibility, as they do not permit graceful degradation in applica-

tion performance when resource management policies mandate changes in allocations; and (3)
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existing approaches suffer from poor scalability as they are not effective in managing large sets

of advance reservations or handling resource fragmentation. To overcome these challenges, al-

gorithms for advance reservations need to be efficient so they can adapt to dynamic changes in

resource availability and users’ demand without affecting system and user performance.

Co-allocation of resources enables applications with high QoS requirements to orches-

trate multiple resources for their execution. In fact, it is one functionality resulting from the use

of advance reservations since by means of advance reservations a resource manager can guarantee

the availability of multiple resources at a specific time in the future. Nevertheless, such approach

may incur long scheduling times and, therefore, hinder the QoS perceived by applications. This

observation leads to the conclusion that, although the co-allocation problem is a specific case of

the problem of allocating resources in advance, there is a need for developing new mechanisms

capable of accommodating for their differences.

We believe that the ability to offer and guarantee QoS to users is of utmost importance

to Grid providers. Without QoS guarantees, users may be reluctant to pay for Grid services

or contribute resources to Grids, impeding further development of the Grid model and limit-

ing its economic significance. Mechanisms for support of QoS also enable service providers to

differentiate themselves by offering an optimized menu of services. Therefore, in this thesis

we present a framework for designing effective and efficient scheduling algorithms that employ

advance reservations and support co-allocation of resources to guarantee QoS to users.

1.2 Contributions

The contribution of this thesis is two-fold. First, we use concepts from computational

geometry to present a framework for tackling resource fragmentation, and for formulating a

suite of scheduling strategies that support advance reservations and user deadlines. We also

design and develop efficient implementations of the scheduling algorithms that scale to large

homogenous and heterogeneous Grid environments. We conduct a comprehensive performance

evaluation study using simulation, and we present numerical results to demonstrate that our

strategies perform well across several user and system performance metrics and overcome the

lack of scalability and adaptability of existing mechanisms.

Second, we consider the problem of co-allocation of resources in Grid-like environments.

We develop an online co-allocation algorithm that is efficient in co-allocating resources while

providing support for advance reservations (QoS guarantees). We achieve this by partitioning

the temporal space into a set of quanta and by using efficient 2-dimensional balanced search
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trees to organize the co-allocations. We have also performed an in-depth comparative analysis

of our algorithm against conventional batch schedulers under real workloads. Our results pro-

vide some insightful conclusions indicating that online scheduling algorithms may achieve–under

most conditions–high overall rate of utilization, while providing smaller delays and better QoS

guarantees without adding much complexity. We also show that our co-allocation algorithm

scales to systems with large number of resources and heavy workloads.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2 we briefly introduce Grids and motivate

their need for QoS support. In Chapter 3 we propose a framework that uses concepts from

computational geometry to schedule resources in homogeneous environments. We consider the

same problem of allocating resources in advance but in heterogeneous environments in Chapter 4.

In Chapter 5 we present a scheduling algorithm that uses quantization to co-allocate resources.

Finally, we conclude the thesis and discuss future work in Chapter 6.
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Chapter 2

Grids, QoS and Advance

Reservations

2.1 The Grid

The term “Grid” emerged as a term denoting a proposed distributed computing in-

frastructure for advanced science and engineering [2, 3]. It has its root in the power grid: just

as the power grid brought about a radical change in making power universally accessible in the

beginning of the 20th century, computation Grids provide users with reliable, pervasive and

low-cost access to computational power.

Grids have became an essential infrastructure for resource-intensive scientific and com-

mercial applications [2, 4] as they enable the sharing and dynamic allocation of distributed,

high-performance computational resources. They minimize the associated ownership and oper-

ating costs and hence promote flexibility and collaboration among diverse organizations.

Initially, the development of Grid technologies was driven by the need of the scientific

community to collaborating over the network. Therefore, enabling resource sharing was the

major goal in the design and development of the first Grids in the mid 1990s; resources from a

broad variety such as large data sets, computational resources, software, scientific instrumental

devices (e.g., telescopes) were shared and coordinated among multiple virtual organizations and

academic institutions. Since then, a wide variety of scientific applications have been developed

to leverage the aggregative capability of resources, and have rapidly increased in complexity and

size [5, 6, 7, 8].
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2.2 Quality of Service (QoS) in Grids

Owing to the advances in technologies such as resource virtualization, web services,

service oriented architectures (SOA) and network management among others, Grids have expe-

rienced enormous growth not only in respect to their adoption–they have became the de-facto in-

frastructure for provisioning computing service in academia and corporate R&D environments–

but also in their functionality, complexity and size.

This phenomenon has led to the emergence of a wide range of applications capable of

performing tasks of a complexity not envisioned before. For instance, several scientific work-

flow applications [9, 6, 10] involve the orchestration of multiple computation and data transfer

stages. These stages normally have strong dependency on completion times; thus the abil-

ity to co-schedule and synchronize resource usage is crucial. Furthermore, emerging classes

of deadline-driven scientific and commercial applications such as financial market and severe

weather modeling [5] require simultaneous access to multiple resources and predictable comple-

tion times.

One major paradigm that has its roots in the advancement of Grid technologies is on-

demand computing. On-demand computing [11, 12] has been proposed as a viable model in which

a wide range of finer grained commercial, business, and scientific applications would tap into

the Grid resources on an as-needed basis, extending the reach and utility of Grid computing

far beyond its current user base to society as a whole. For instance, more recently Amazon

launched its own Cloud computing service (EC2) [1]; earlier, Sun Microsystems started offering

the Sun Grid computation utility [13], and more such services are expected in the near future.

This vision of computing as an utility is expected to change not only the way scientists and

businesses work, but also the way they think about computing resources.

The realization and full adoption of the aforementioned applications and paradigms de-

pends on the development of sophisticated resource management systems capable of allocating

resources to users based on agreed upon quality of service (QoS) requirements [14], while satis-

fying certain system level objectives (e.g., high utilization, economic constraints, etc.) [15, 16].

Furthermore, without QoS guarantees, users may be reluctant to pay for Grid services or con-

tribute resources to Grids, hindering further development of the Grid model and limiting its

economic significance. Mechanisms for supporting QoS also enable service providers to differen-

tiate themselves by offering an optimized menu of services.

In spite of these observations, support for QoS is fairly limited in existing Grid infras-

tructures. This state of affairs has its roots in many historical and technical factors. Initially,



6

the major driving force behind the development of Grid technologies was the need to aggre-

gate and share computational resources in a cost-effective way among the scientific community.

Hence QoS-support was left as a secondary consideration. Furthermore, Grid environments are

intrinsically complex in that they consist of heterogeneous resources geographically and logi-

cally distributed among multiple virtual organizations, with different policies dictating access

and usage of resources. Moreover, due to the lower costs of commodity hardware and the de-

velopment of technologies such as OS virtualization–that break the physical barrier of isolated

systems–Grids are increasingly growing in size.

Much work can be found in the literature addressing the aforementioned technical chal-

lenges. Majority of this work lays within the context of service level agreements (SLA) [17, 18],

which in essence aim at providing QoS by defining a set of rules that determine the interaction

between the user and the Grid service provider. We argue that although embedding QoS-support

at higher layers of the architecture is required, having QoS-oblivious mechanisms (e.g., sched-

ulers) at lower layers is counter-productive as they are likely to hinder the effectiveness of the

high-layer mechanisms in achieving their goals (i.e., providing QoS guarantees).

One important component of a Grid architecture is the scheduler. The scheduler’s

main task is to allocate resources to incoming requests for service, and therefore, it is primarily

responsible for the QoS permissible in a Grid. Following this observation, in this thesis we focus

on embedding QoS-support into the Grid scheduler.

2.3 Scheduler and QoS

Scheduling and management of Grid resources is an area of ongoing research and de-

velopment. Several open source or proprietary schedulers have been developed for clusters of

servers, including Maui [19, 20], CONDOR [21], Catalina [22], LoadLeveler [23], portable batch

system (PBS) [24], and load sharing facility (LSF) [25]. They typically work under best-effort

policies, run in batch mode, can be customized to specific policies, and balance the load among

various servers. However, the primary objective of most existing approaches is to improve over-

all system performance (e.g., utilization), while the QoS experienced by Grid users is, at best,

of secondary consideration [4]. For instance, batch systems typically allocate resources to jobs

as they become available, without considering applications that need to obtain results within a

strict deadline [14]. In general, the schedulers process jobs in order of priority, which is deter-

mined based on job attributes such as job class and time in queue [19, 20]; they also employ

backfilling operations, i.e., run jobs out of order, to make better use of the available resources.
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Unfortunately, backfilling often interferes with the ability of the system to provide QoS guaran-

tees, as in its attempt to improve utilization it may bypass the job priorities set by the system

administrator [20].

2.4 Advance Reservations

Advance reservations, i.e., the ability of the scheduler to guarantee the availability of

resources at a particular time in the future, is one mechanism that has been proposed for pro-

visioning performance predictability, meeting resource requirements and providing guaranteed

QoS to applications in Grid environments.

Overall, advance reservation of resources [26, 4, 27, 2, 28, 29, 26, 4, 2, 28, 29, 30, 31,

32, 33, 31, 34, 35, 36] has generated great interest in the Grid community; and some existing

schedulers, including Maui [19] and Condor [21], provide some sort of advance reservation mech-

anisms. However, existing approaches for making reservations in the future lack sophistication,

are expensive, and do not scale well.

As a matter of fact, despite the attractive features of advance reservations, there is

great scepticism in the Grid community about their ability to meet their promise; this fact is

mainly due to three reasons. First, advance reservations have shown to cause severe performance

degradation [29, 27]. Second, typical advance reservation mechanisms lack flexibility as they do

not permit graceful degradation in application performance when resource management policies

mandate changes in allocations [37]. Third, existing approaches suffer from poor scalability

as they are not effective in managing large sets of advance reservations or handling resource

fragmentation. Also, most solutions lack sophistication, and are not able to address the user

needs (e.g. time guarantees) and system requirements (e.g., high performance/throughput) in

an integrated manner. To overcome these challenges, algorithms for advance reservations need

to be efficient so they can adapt to dynamic changes in resource availability and user demand

without hurting system and user performance.

2.4.1 Co-allocation of Resources

Advance reservation has also been proposed as one mechanism to effectively support

co-allocation of resources [38], i.e., the simultaneous allocation of multiple resources to a single

user or application. For instance, by incorporating advance reservation capabilities the resource

manager can guarantee that a set of resources will be available and offer a specific level of service

when required. The problem of co-allocating resources has gained increasing recognition as a
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result of a broad range of emerging end-to-end sophisticated applications that harness network

and computational resources over the Internet. One such common application is experimental

reconstruction. For example, in [39] a scientific instrument along with multiple computers and

display devices were used for collaborative real-time reconstruction of X-ray source data. The

importance of these applications has been recognized by research, industry and government

communities through the support of several initiatives [7] [40] [8].

In principle, such simultaneous allocations can be achieved manually by reserving each

allocation in advance. However, the growing trend towards more virtualized environments has

emphasized the need to provide automated solutions to support the management and coordina-

tion of multiple resources.

One of the key challenges in the design of such management mechanisms is scala-

bility. Large scale distributed systems tend to aggregate large number of resources that are

typically geographically distributed in a network to support sophisticated end-to-end applica-

tions. Designing algorithms that are efficient in scheduling jobs in such large-scale environments

is difficult. There is two-fold benefit of achieving this goal. First, it offers QoS support to

users, as reflected by short response times–a feature that is crucial to the success of emerging

sophisticated end-to-end applications. Second, it provides the resource managers with an ability

to respond quickly to changes in resource availability and users’ demand that occur over short

periods of time–a common condition in emerging distributed environments [41].

Meta-scheduling [42, 43, 44] is one such mechanism that has been proposed to or-

chestrate the access to resources within several domains in a Grid. However, lack of efficient

scheduling algorithms capable of scaling to large number of resources hinder their implementa-

tion and adoption. To exacerbate the problem, wide adoption of OS virtualization [45] promises

to enable computing systems of large magnitudes, further escalating the aforementioned issues.

2.4.2 Related Work

In this section, we discuss some of the most relevant work to this thesis in the context

of advance reservations in general, and resource co-allocation more specifically.

GARA (Globus Architecture for Resource Allocation) [38] is one of the seminal works

on advance reservation and defines a basic architecture and simple API for the manipulation of

advance reservations of different resources. Since then, numerous papers have studied the impact

of advance reservation on system and user performance. One such work theoretically proves that

reservations can be used to improve the performance predictability of applications [32]. To order
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to prove this, the author enhanced the ASKALON scheduler [46] to allow for negotiation between

a user and the resource manager. The performance of advance reservations in the context

of workflow applications has also been investigated [30]: this work concludes that significant

reduction in the completion time of is possible by using FIFO or fair share policies. It also

shows that dynamic provisioning, with no support for advance reservation at the remote sites,

can also be used with equal or more effectiveness than advance reservations. It also has been

observed that waiting times of applications submitted to the scheduling queue increases when

reservations are supported [27]. Further, the authors also found that the best performance

is achieved when we assume that applications can be terminated and restarted, backfilling is

performed, and relatively accurate run-time predictions are used. A simulation based study

to analyze the impact on system and user performance of advance reservation is presented

in [29]. The study concludes that reservation based systems benefit parallel and reserved jobs

significantly. A more general study on the usefulness of advance reservation is presented in

[33]. Reaching similar conclusions regarding the usefulness of advance reservations by means

of theoretical analysis, the authors in [47] propose a reservation architecture based on a “the

predictability trinity”: Grid Scheduling, Reservation Fabric and Performance Models.

It is worth mentioning that most of the aforementioned research work overlooks the

issues of scalability and efficiency encountered when supporting advance reservations. This is in

contrast to our work where efficiency is an important factor in the design and development of

our scheduling algorithms. In fact, the mentioned works show that the Grid community has not

reached a consensus regarding the benefits and drawbacks of advance reservations. Neverthe-

less, we believe that the drawbacks far outweigh the positives of current advance reservations

mechanisms and this justifies the importance of the problem being solved in this thesis.

One of the major criticism of advance reservations is that they do not allow for graceful

degradation in performance. This is due to the assumption that users know a priori the duration

of their jobs. The introduction of laxity and fuzziness has been explored to overcome this

challenge [48, 49].

More recent works in advance reservations in Grids [50] [35] incorporates for negotiation

and optimization techniques. For instance, a multi-objective genetic algorithm for selecting

resources so as to optimize the application performance while minimizing the resource costs is

proposed in [50]. It has also been shown that a cost-aware resource model in which reservation

for each application task is performed separately by negotiating with the resource provider is

feasible to support advance reservations [35]. Leveraging economy concepts, a broker service for

Grid resources is presented in [51] which takes into account the fact that deadline and budget
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are specified, and then optimizes the usage of resources only by considering the current state

of the resources but without any planning horizon. Note that these works rely on multiple

mechanisms such as negotiation to schedule reservations and ignore the issues of efficiency that

become important as Grid systems grow in size. In our work we focus on providing algorithms

that are efficient and fully capable of scheduling reservations, thus, avoiding dependency on

additional administrative mechanisms.

Several commercial and open-source resource managers have been developed for the

Grid [23, 25, 52, 24, 53]. Most of this work relies on batch scheduling techniques and there-

fore suffer from the same limitations mentioned earlier. Furthermore, most of these schedulers

employ backfilling operations, i.e., run jobs out of order, to make better use of the available

resources. Unfortunately, backfilling often interferes with the ability of the system to provide

QoS guarantees, as in its attempt to improve utilization it may bypass the job priorities set

by the system administrator [20, 54]. A complete survey and discussion on parallel scheduling

techniques such as backfilling and gang scheduling can be found at [54, 55]. In such existing

managers the support advance reservations is very limited and lack of sophistication.

The studies in [56, 57] represent some of the earliest work on co-allocation mechanisms

for distributed computing environments. The main contribution of these works is a multi-layered

approach in which a set of basic co-allocation mechanisms can be used to construct a wide

range of application-specific co-allocation strategies. In [58], the authors address several issues

regarding the management of resources in the context of meta-computing. More specifically,

they focus on location and allocation of resources, process creation and authentication. The

concept of virtual resources is introduced in [59] to support co-reservations. In [60, 61] the

authors propose a framework for mapping resources to tasks in which the overall objective is

to minimize schedule length. In order to do this the framework relies on an adaptation process

that changes the scheduling order and/or resource assignments at run time. Similar to our

previous observation on schedulers that support advance reservations, most of this work rely on

additional mechanisms on top of the scheduler to guarantee resource allocation.

Scheduling in multi-site Grid environments is in essence equivalent to the co-allocation

problem with network resources being the major differentiating factor. There has been work

showing that such co-allocation is beneficial as long as the communication overhead is kept below

25% [62]. In a similar vein, in [63] authors present a comparative study of local and global queues

and propose four scheduling policies for processor co-allocation in multi-clusters. Their main

conclusion is that, in general, using multiple local queues yields better performance than using a

single global queue. Two algorithms based on batch scheduling techniques are proposed in [64].
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Authors conclude from their experiments that scalability is one of the key differences between

the co-allocation problem in Grid and parallel computing environments.

In order for workflow applications to meet time dependencies in between sub-tasks they

require simultaneous access to multiple resources. Therefore, algorithms such as list scheduling–

widely used in this context–have been adapted to accommodate for the specifics of Grid en-

vironments. For instance, in [65] the authors propose a scheduling algorithm based on list-

scheduling algorithm for finding the minimum execution time of a set of parallel tasks that

require co-allocation in Grids. More recently, authors in [66] extended the well known HEFT

(Heterogeneous Earliest Finish Time) algorithm and proposed two heuristics that support co-

allocation and advance reservations in Grids. Both works [32, 30] mentioned earlier also address

the co-allocation problem in the context of workflow applications.
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Chapter 3

Efficient Scheduling Algorithm for

Grids - homogeneous

In this chapter we consider the problem of providing QoS guarantees to Grid users

through advance reservation of resources in homogeneous environments. We use concepts from

computational geometry to present a framework for tackling the resource fragmentation, and

for formulating a suite of scheduling strategies. We also develop efficient implementations of

the scheduling algorithms that scale to large Grids. We conduct a comprehensive performance

evaluation study using simulation, and we present numerical results to demonstrate that our

strategies perform well across several metrics that reflect both user- and system-specific goals.

The chapter is organized as follows. In Section 3.1 we describe the online scheduling

problem we study in this work, and in Section 3.2 we present a framework for reasoning about

advance reservations that borrows ideas from computational geometry; we also describe a suite

of scheduling strategies that arise naturally within the framework. In Section 3.3 we provide

additional details on the implementation of the scheduling algorithms and of the data structures

related to managing the fragmentation of resources. In Section 3.4 we present simulation results

to evaluate the various strategies in terms of several performance metrics, and we conclude the

chapter in Section 3.5.

3.1 Problem Description

Consider a scheduler S for a Grid with n servers which may be geographically dis-

tributed in a network.We make the assumption that all servers are identical in terms of their

processing capacity C. In Chapter 4 we extend the algorithms we present here to non-identical
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resources. A user with job j requiring service submits a request to the scheduler. The request

is characterized by a three-parameter tuple (rj , lj , dj), where:

1. rj is the ready time of the job, i.e., the earliest the job can be made available to the Grid

for processing;

2. lj is the length of the job, i.e, the amount of work the job requires; and

3. dj(≥ rj + lj) is the deadline of the job, i.e., the latest time by which the job can be

completed.

The deadline is a measure of the quality of service required by the user. We assume that deadlines

are hard, in that a user receives utility only if the job completes service by its deadline. Therefore

if S determines that the deadline cannot be met, it drops the job and notifies its user accordingly.

We consider the online scheduling problem whereby users submit service requests to

S at random instants. We assume that S maintains a schedule which records, for each server

i, the time periods in the future during which the server is reserved for jobs that have already

been accepted to the system. In essence, this schedule represents the set of advance reservations

that have been made, and it guarantees that server resources will be available to the accepted

jobs at specific future times. Figure 3.1(a) shows an example schedule for a 2-server system.

The schedule shows that at the current time (i.e., time t = 0 in the figure), there are three jobs

scheduled for server 1: the job currently in service which will end at time t1, job A which has

reserved the server from time t3 to t5, and job D which has reserved the server from time t9

to t11; similarly, three jobs have been scheduled for server 2. The figure also shows a service

request for scheduling a new job j with ready time rj = t6 and length lj = t8 − t6.

When a service request (rj , lj , dj) for a new job j arrives, S immediately runs an

algorithm to determine whether it is feasible to schedule the job so as to meet its deadline. If so,

then S uses a set of criteria to select one of the (possibly multiple) servers who can handle this

job, updates its schedule, and returns a reference to this server to the user; otherwise, the job

is dropped. The scheduling decision impacts the performance perceived by users as reflected by

the fraction of jobs meeting (or missing) their deadlines and the turnaround times of the jobs.

It also impacts the overall system performance as reflected by the system utilization, which is a

measure of how well the overall service capacity of the system is used. The challenge, therefore,

is to develop efficient online scheduling algorithms that minimize the fraction of dropped jobs

while maximizing utilization.



14

new job

server 1

server 2

(a)

job A

job B job C

job D

Time0

new job

t2 t3 t4 t5 t7 t8 t9t6 t10t1

t1
t

t

t

2

5

7

t6

t3 t4 t8 t9

st
ar

tin
g 

tim
e

ending time

(b)

t11

X

Y

Z

W
X

W

Y

Z

P

Figure 3.1: (a) Advance reservations in a 2-server system: jobs scheduled and idle periods, (b)
equivalent geometric representation of the schedule: idle periods as points in the plane

Several variants of this scheduling problem with advance reservations and/or deadlines

have been studied in multiprocessor and Grid systems [27, 28, 67, 68, 69]. However, the heuristic

solution approaches that have been proposed may not scale well and may not utilize the available

system capacity efficiently [14, 2]. In the next section, we present a new framework for developing

efficient algorithms for this problem taking into account a range of optimization criteria.

Before we proceed to address the general scheduling problem, let us consider a restricted

version in which jobs must be scheduled as soon as they are ready. In this case, deadlines are

immediate (i.e., dj = rj + lj), and we refer to this problem as resource scheduling with immediate

deadlines. One straightforward approach for tackling this problem is for the scheduler S to keep

track of the completion time of each server, defined as the latest time at which the server

becomes free based on the existing advance reservations. The scheduler then assigns an arriving

job to the server with the latest completion time that is earlier than the ready time of the new

job. This latest available completion time (LACT) algorithm takes time O(log n) to schedule a

job. However, it can be inefficient in terms of both capacity utilization and job drop rate, as

it does not consider the idle periods created at each server between the times reserved for jobs

whose requests were submitted earlier. For instance, in the scenario shown in Figure 3.1(a) for

a 2-server system, the completion time for server 1 is t11 (the service completion time of job

D), while the completion time for server 2 is t10. Therefore, the LACT algorithm will reject

the service request for the new job with arrival time t6 < t10 < t11, although the job can be

accommodated on server 1 within the idle period Y created between jobs A and D.

An algorithm that considers the idle periods when making decisions was developed

in [70] in the context of scheduling bursts in optical burst switched networks. The algorithm
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uses concepts from computational geometry [71] to represent the time intervals corresponding

to idle periods as points in a plane, as illustrated in Figure 3.1(b). Since the ending time of an

idle period must be greater than its starting time, all points will always be above the diagonal in

Figure 3.1(b). Then, the problem of finding a feasible idle period for scheduling a new job (also

represented as a point P in the plane) is equivalent to finding a point that completely contains1

point P . In Figure 3.1(b), it is seen that point Y completely contains the point corresponding to

the new job, thus the latter can be scheduled within idle period Y on server 1. By maintaining

a balanced priority search tree data structure [72] containing all the idle periods on all servers,

finding an idle period for a new job, or determining that one does not exist, takes time O(log K),

where K is the number of idle periods. Updating the data structure to add new idle periods

(created when a new job is scheduled) or remove ones in the data structure (as time advances),

also takes time O(log K). The value of K, however, can be significantly larger than the number

n of servers, and we have found that its value increases rapidly with the offered load of jobs; in

other words, in moderately to highly loaded systems, in which it is important to make scheduling

decisions quickly, the running time of the algorithm is longer.

3.2 Scheduling with General Job Deadlines

We now present a general framework that provides new insight into the problem of

online scheduling with advance reservations in Grid environments. Our approach extends pre-

vious work in three directions: (1) it allows for general job deadlines (i.e., the deadline of a job

j may take any value dj ≥ rj + lj , ∀j); (2) it provides the foundation for formulating a range

of scheduling strategies based on a variety of optimization criteria; and (3) it leads to highly

efficient algorithms for these strategies.

Let us return to the representation of idle periods as points in the plane that we

illustrated in Figure 3.1. Assuming that the current time t = 0, Figure 3.2(a) shows the current

schedule of advance reservations for a 3-server system, along with a request to schedule a new

job j with the tuple (rj = t6, lj = t8− t6, dj = t12). Figure 3.2(b) is the geometric representation

of this schedule. The fact that job j has a general deadline is represented in Figure 3.2(b)

by the line segment between points P and P ′, where point P = (rj , rj + lj) (respectively,

P ′ = (dj − lj , dj)) corresponds to the earliest (respectively, latest) possible pair of starting and

ending times for this job. Consequently, the scheduler may select any point on this line segment

as the starting/ending times of the job, as long as there is an idle period completely containing
1We say that point x = (x1, x2) completely contains point y = (y1, y2) iff x1 ≤ y1 and x2 ≥ y2.
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this point.

Consider the new job j and its geometric representation in the plane, as shown in

Figure 3.2(b). The feasible region of job j refers to the part of the plane where all idle periods

that can accommodate this job may lie. The feasible region is the part of the plane above and

to the right of the line segment between P and P ′, since only any idle periods in that region

will fully contain some point of the line segment. The feasible region can be partitioned into

two subregions, R1 and R2, as in Figure 3.2(b). Any idle period lying in R1 (e.g., idle periods

Y an V in the figure) starts at or before the new job’s ready time rj (= t6 in the figure), and

ends after the earliest time the job can be completed (= t8 in the figure). Therefore, any idle

period in this region can accommodate the new job without delaying its execution, i.e., the job

can start execution at its ready time rj . Any idle period lying in R2, on the other hand (e.g.,

idle period Z in Figure 3.2(b)), starts later than the job’s ready time but is large enough for it.

Hence, the job may be assigned to any idle period in R2 at the cost of delaying its execution

beyond its ready time.

3.2.1 Partitioning of the Idle Periods

Our objective is to obtain efficient algorithms for the online scheduling problem with

general deadlines. We note that the work in [70] was developed for the special case of immediate

deadlines. Recall also that the algorithm developed in [70] maintains a single priority search

tree that contains all K points in the plane, i.e., all K idle periods on all servers. A single
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tree structure is appropriate for immediate deadlines, in which case each job is represented by

a single point in the plane. However, it cannot be directly applied to the more general problem

we are considering, in which jobs are represented by a line segment, such as the one between

points P and P ′ in Figure 3.2(b). With a single tree structure, the only way to handle a job

with a general deadline is to perform multiple searches for multiple points along the line segment

representing this job. Such an approach is inefficient if the points on the line segment are selected

close to each other, since each search takes O(log K) time; whereas it may fail to find feasible

idle periods if the points are selected far from each other to lower the worst-case running time.

In order to obtain efficient scheduling algorithms for the problem at hand, we partition

the area of the plane above the diagonal into strips of width equal to twice the minimum job size

lmin.Figure 3.2(b) shows the partitioning of the plane into horizontal strips. Alternatively, one

might partition the plane into vertical strips of width 2× lmin; the choice of direction depends

on the optimization strategy selected, as we discuss shortly. Doing so in effect partitions the set

of K idle periods into a number H of subsets, where subset h, h = 1, · · · ,H, contains the idle

periods falling within the h-th strip.

Rather than maintaining a single tree data structure as in [70], we maintain H priority

search trees, one for each strip. We also ignore (i.e., do not keep any information about) any

idle period of length less than lmin, as it cannot be used for scheduling any job. Maintaining one

tree structure for each strip is based on the observation that a given strip may contain at most

one idle period from each server. To see that this is true, note that two consecutive idle periods

on the same server must be separated by a job of length at least lmin, and that the length of

each idle period is at least lmin (otherwise the idle period is discarded); therefore, the starting

(and ending) times of two idle periods on any given server are at least 2× lmin time units apart

from each other. In other words, the number of idle periods in a strip is bounded above by the

number n of servers. Consequently, updating the schedule (i.e., adding or removing idle periods)

takes time O(log n), rather than O(log K), where typically n ¿ K.

Since each priority search tree structure contains only a subset of the set of idle periods,

it may be necessary to search several trees to find a feasible idle period for a new job request2.

Consider point P in Figure 3.2(b), representing the earliest time the new job may start execution.
2To improve the scalability of the algorithm, in terms of both running time and memory usage, we may

partition the plane in strips of length M × 2× lmin, where M is an integer greater than one. In this case, there
will be no more than M idle periods from each server within each strip, or no more than nM idle periods in all.
Consequently, the complexity of searching each tree becomes O(log(nM)), or O(log M +log n), but the number of
strips (and corresponding trees) to be maintained decreases to H/M , where H is the number of strips for M = 1.
Letting M = nk, where k is a small integer, reduces the number of trees by a factor of nk compared to the case
M = 1, while the time to search each tree increases only by a factor of k + 1, i.e., becomes O((k + 1) log n).
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In this example, the new job can be scheduled either in the idle period represented by point V or

the one represented by Y . Point V can be found by searching the tree structure corresponding

to the strip in which point P lies; however, if point V (i.e., the corresponding idle period) did

not exist, one would have to continue searching strips above the one in which P lies (i.e., those

with starting times earlier than the new job) in order to find an idle period (in this case, point

Y ) that would not delay the start of the job. On the other hand, if neither V or Y existed, the

search would have to continue in strips below the one in which P lies, to identify idle periods

(e.g., Z) that could accommodate this job at some starting time along the line segment from P

to P ′.

In addition to allowing the scheduler to handle jobs with general deadlines efficiently,

the partition of idle periods into subsets also enables the natural implementation of a variety

of strategies for selecting one among multiple feasible idle periods. This unique feature of our

approach, due to its inherent flexibility in terms of partitioning the plane either horizontally or

vertically, and in terms of the order in which the strips are searched, is discussed in detail in the

next subsection.

3.2.2 Scheduling Strategies

We now describe a suite of scheduling strategies which make use of the approach we

outlined in the previous subsection. These strategies are based on the observation that a job

scheduled in an idle period will create at most two new idle periods: one between the start of

the original idle period and the start of the job (the leading idle period), and one between the

end of the job and the end of the original idle period (the trailing idle period). The creation

of these new, smaller idle periods results in further fragmentation of the available capacity, and

may prevent future job requests from being accommodated. Therefore, it may be desirable to

schedule a new job within the idle period such that the size of either the leading or trailing idle

periods created is optimized, since doing so is likely to increase the chances that future jobs will

fit in these new idle periods.

To illustrate how the partitioning of the plane into strips can facilitate the implemen-

tation of such scheduling strategies, consider again the new job in Figure 3.2. This job can be

accommodated by three idle periods, corresponding to points Y , V , and Z. Selecting either

point V or point Z will result in a leading idle period of zero length (in fact, any point in the

feasible region R2 will have the same effect). On the other hand, selecting point Y in region R1

will result in a leading idle period of length (t6 − t5); furthermore, the higher up in region R1 a
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point lies, the larger the leading period that will be created if the job is assigned to it. Based

on these observations, if the objective is to minimize the leading idle period, the search must

start in strips within region R2 first; if that fails, the search should continue with the bottom

strip within region R1, and proceed upwards until a feasible idle period is found. If, however,

the objective is to maximize the leading idle period, then the search must start at the topmost

strip of region R1, and proceed downwards. Note also that while all points in region R2 will

result in a leading period of zero length, the later the starting time of a point the longer the

execution of the new job will be delayed. This suggests that the strips of region R2 should be

searched from top to bottom to minimize the job turnaround time.

Similar observations can be made regarding the goal of optimizing the length of the

trailing idle period created when scheduling a new job. This objective can be achieved by par-

titioning the plane in vertical strips (as opposed to the horizontal ones shown in Figure 3.2(b)),

and following a similar search strategy.

The following strategies for the scheduling problem with general job deadlines arise

naturally within this framework:

1. Min-LIP, which minimizes the leading idle period;

2. Min-TIP, which minimizes the trailing idle period;

3. Best-fit, which minimizes the sum of the leading and trailing idle periods;

4. First-fit, which returns the first (i.e., earliest) feasible idle period, regardless of the sizes

of the leading and trailing idle periods.

We discuss the implementation of these strategies in the next section. We have also considered

the maximization versions of the first two strategies (i.e., max-LIP and max-TIP), but due to

space constraints we do not discuss them here.

3.3 Algorithm Description and Implementation

We now describe in detail the algorithms and related balanced tree data structures for

implementing the min-LIP and best-fit scheduling strategies, and we analyze their worst-case

running time. At the end of the section, we discuss the modifications required to implement the

min-TIP and first-fit strategies.
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3.3.1 Balanced Tree Structure for the Min-LIP Strategy

Recall from Section 3.2.1 that we partition the set of idle periods on all servers into H

subsets, each subset corresponding to one of the horizontal strips in the geometric representation

of the schedule of advance reservations (refer to Figure 3.2(b)) and consisting of the idle periods

in this strip. Each subset is of size at most n, where n is the number of servers. The number H

of subsets (equivalently, of horizontal strips) depends on how far in the future users are allowed

to make advance reservations. For a given system, the value of H is fixed.

By construction, each subset h, h = 1, · · · ,H, contains all idle periods with starting

times in the interval [2(h− 1)lmin, 2hlmin). The idle periods in subset h are stored in a priority

balanced search tree Th; in our implementation, we use augmented red-black trees [73]. When-

ever the scheduling algorithm (described in the next subsection) needs to search subset h to find

an idle period for a new job, tree Th is searched; as we explain shortly, the manner in which the

tree is searched depends on the part of the feasible region (R1 or R2 in Figure 3.2(b)) in which

the corresponding strip lies. The search of tree Th will be unsuccessful if and only if no feasible

idle period for the new job exists in this strip. Otherwise, the search will return a feasible idle

period that optimizes a given objective; for the min-LIP strategy we are considering, it will

return the idle period that will result in the minimum leading idle period among all feasible idle

periods in the strip.

In tree Th, the actual idle periods are in the leaf nodes, arranged in ascending order of

their starting time. For the min-LIP strategy, a leaf node corresponding to idle period X stores

the following information:

• the starting time of X;

• the ending time of X; and

• other auxiliary data, such as the identity of the corresponding server.

Internal tree nodes store information regarding the idle periods in their subtree. This

information is used to navigate the tree and locate idle periods appropriate for the new job to

be scheduled. In the case of the min-LIP strategy, the information stored in internal node v

consists of:

• the median of the starting times of the idle periods stored in the subtree of Th rooted at

v;

• a pointer to the idle period in v’s subtree with the latest ending time; and
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Figure 3.3: (a) Schedule of advance reservations, (b) balanced tree structure storing the idle
periods in the second strip from the top

• a pointer to the idle period in v’s subtree with the maximum length.

Figure 3.3(b) shows the balanced tree Th associated with the second strip from the top

of the schedule shown in Figure 3.3(a). This strip contains four idle periods with starting and

ending times: X = (s1, e1), Y = (s3, e2), Z = (s3, e5), and V = (s4, e4). Since s1 < s3 < s4, the

idle periods are stored in this order as the leaves of the tree in Figure 3.3(b). Internal node B of

the tree stores the median s1 of the starting times of idle periods X and Y stored in its subtree,

along with pointers to the idle period with the latest ending time (i.e., Y ) and the largest one

(i.e, X); similar information is stored in node C and the root A of the tree.

Note that as time advances, idle periods expire (i.e., their ending time passes) and must

be discarded. Our approach of partitioning the plane into strips and maintaining a separate tree

structure for the idle periods within each strip makes it easy to handle expired idle periods. Let

us assume that the system starts operation at time t = 0, and that we maintain H strips, each

of width 2lmin. Since the scheduling horizon (i.e., the time in the future during which a job can

be scheduled) is H×2× lmin time units, then no idle period can end at time t′ > t+H×2× lmin,

where t is the current time. Consider the topmost strip with index h = 1. Initially, the latest

time at which an idle period in this strip may end (expire) is at time t′ = (H +1)× 2× lmin− ε,

corresponding to the scheduling, at time t = 2× lmin − ε, of a job with ready time H × 2× lmin

time units in the future. Therefore, at time t = (H + 1) × 2 × lmin, the tree corresponding to

strip with index h = 1 is discarded, since all idle periods recorded in that tree have already

expired. At the same time, all strips (and corresponding trees) with indices h, h = 2, · · · ,H,
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are renumbered to h′ = h − 1, and a new empty tree is created to record idle periods falling

in the new strip with index h′ = H. This discard operation is repeated every 2lmin time units

thereafter. All the operations involved in discarding a tree can be performed in O(1) time with

no extra memory cost by using (1) a circular queue to record the tree indices, and (2) modulo-H

arithmetic. If a single tree structure were used instead to store all idle periods, deleting expired

idle times would require additional information to be kept at internal nodes, as well as costly

periodic operations to locate all idle times with past ending times.

3.3.2 Min-LIP Algorithm

Consider a request to schedule a new job j with parameters (rj , lj , dj). Let P and P ′

be the points in the geometric representation of the schedule that correspond to the earliest and

latest times, respectively, at which the new job can be scheduled (refer also to Figure 3.3(a)). Let

p, 1 ≤ p ≤ H, be the index of the horizontal strip in which point P lies; let p′ ≥ p be the index

of the strip where point P ′ lies. Similar to our earlier discussion, we also let R1 (respectively,

R2) denote the part of the feasible region for the new job j containing idle periods with starting

times earlier (respectively, later) than the job’s ready time rj .

The min-LIP algorithm to find a feasible idle period for the new job j that minimizes

the length of the leading idle period created consists of two steps: a search in region R2, followed

by a search in region R1, if necessary. Next, we describe these two steps in detail.

Step 1: Search in region R2. The algorithm first searches for a feasible idle period in region

R2. Any such idle period has starting time s ≥ rj ; hence, we schedule job j to start at time s,

avoiding the creation of a leading idle period. Although any feasible idle period in this region

is optimal in terms of the objective we consider, assigning the new job to an idle period with

starting time s will delay the execution of the job by an amount of time equal to s − rj units

beyond its ready time. In order to minimize this delay, the min-LIP algorithm explores the

horizontal strips in this region in top-to-bottom fashion, i.e., by examining the corresponding

trees in the order Tp, Tp+1, · · · , Tp′ .

The min-LIP algorithm exploits the observation that any feasible idle period in region

R1 is optimal in order to examine each tree Th, h = p, · · · , p′, in this region in O(1) time.

Recall that the root of Th maintains a pointer to the largest idle period in the tree (refer to

Figure 3.3(b)). If this idle period is smaller than the new job, then we know that no idle period

in this tree can accommodate this job, and the algorithm proceeds to examine the next tree in

the region; otherwise, the algorithm assigns the job to this largest idle period. Consequently,
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each horizontal strip that contains no feasible idle period is eliminated in O(1) time. At most

one strip with a feasible idle period (the first such strip in the sequence) is examined, and the

assignment of a job to the largest idle period in this strip takes time O(1). In this case, the

corresponding tree Th must also be updated (to delete the largest idle period); this operation

takes O(log n) time, where n is the number of servers in the system. If a trailing idle period

that is larger than the minimum job size lmin is created, it has to be inserted in the appropriate

tree (which may be different than Th). Locating the appropriate tree from the trailing idle

period’s starting time takes constant time, and the insert operation takes O(log n) time. Since

the number of strips that fall within region R2 is at most k = d dj

2lmin
e, where dj is the deadline

of the new job, the worst-case running time of this step is O(k + log n) if the region contains a

feasible idle period, and O(k) if it does not.

Step 2: Search in region R1. If Step 1 fails (i.e., no feasible idle period for the new job exists

in region R2), the algorithm proceeds to explore region R1. If any feasible period in this region

starting at time s is selected, the job will start execution at its ready time rj , creating a leading

idle period of length rj − s. Since our goal is to minimize this length, the algorithm examines

the horizontal strips in this region in bottom-to-top fashion, i.e., it searches the corresponding

trees in the order Tp−1, Tp−2, · · · , T1. Note also that in this step of the algorithm we may safely

ignore the line segment representing the job (e.g., the segment from point P to point P ′ in

Figure 3.3(a)), and simply focus on the single point representing the job starting at its ready

time (i.e., point P ).

Each tree Th, h = p− 1, · · · , 1, in region R1 is searched using a standard algorithm for

red-black trees [73] to find the idle period (if any) with the latest starting time that is large

enough to accommodate the new job. This search takes time O(log n). If a feasible idle period

is found in some tree Th, three update operations must be performed: to delete the idle period

from Th, and to insert the newly created leading and trailing idle periods (as long as they are

larger than lmin) into the appropriate trees; all these operations take O(log n) time [73, 71]. The

number of strips within region R1 is at most m = d rj

2lmin
e, where rj is the ready time of job j.

The worst-case running time of this step is O(m log n) and occurs when either no feasible idle

period exists, or one exists in the topmost strip. Similarly, the worst-case running time of the

overall algorithm is O(k + m log n).

Let us illustrate how the tree search algorithm operates by considering the second strip

from the top in Figure 3.3(a), i.e., the one containing the idle periods X, Y , Z, and V . It is clear

from the figure that only Y , Z, and V can accommodate the new job; of these, V is optimal

in terms of minimizing the leading idle period for the job represented by point P , as it has the
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latest starting time.

The algorithm starts at the root A of the tree in Figure 3.3(b) that stores the idle

periods in this strip. It compares the ready time (rj = s5) of the new job j to the median (= s3)

of the starting times of the idle periods in this tree stored at the root. In this case, s3 < s5,

which implies that some idle periods in the left subtree of A, as well as some idle periods in

the right subtree, start before rj , hence both subtrees may have to be examined further (if the

reverse were true, the algorithm would have eliminated the right subtree of A immediately).

The algorithm then compares the ending time of the job (= e2) to the maximum ending time

of the idle periods in the left subtree of A; this value (= e2) can be obtained by following the

pointer to the idle period Y with the maximum ending time that is stored in the root B of the

left subtree. Since the two values are equal, a feasible idle period may exist for this job in the

subtree rooted in B. Therefore, the algorithm marks node B for possible consideration in the

future, and proceeds to examine the right subtree of A.

The search continues in a recursive manner until a leaf node is reached. In this example,

the ready time (rj = s5) of the job is compared to the median starting time s3 stored in node C.

Since s3 < s5, the algorithm compares the ending time (= e5) of the left child of C to the ending

time e2 of the job. Since e5 > e2, the idle period Z in the left child of C is feasible, and the

algorithm marks the leaf node Z. It then similarly examines the right child of C, and determines

that it also represents a feasible idle period; since this is the one with the latest starting time,

it is optimal and is the one returned by the algorithm. In general, once the algorithm reaches

a leaf node, all idle periods with starting time earlier than or equal to rj are to its left. If the

idle period represented by this leaf is feasible, then it is returned and the algorithm terminates.

Otherwise, it is sufficient to continue the search recursively from the last marked node.

3.3.3 Tree Structure and Algorithm for the Best-fit Strategy

For the best-fit strategy, we use a 2-dimensional tree Th to store the idle periods within

each strip h, h = 1, · · · ,H. The tree corresponding to Th’s first dimension, tsh, is an augmented

version of the min-LIP tree introduced earlier and the information stored at each of its internal

nodes u consists of:

• the median starting time of the idle periods stored in the subtree of tsh rooted at u;

• a pointer to a secondary priority search tree teh; and

• a pointer to a secondary regular binary search tree tlh.
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Trees teh and tlh store the idle periods in u’s subtree in descending order of their ending

time and length, respectively. The information stored at each internal node v of tree teh consists

of:

• the median ending time of the idle periods stored in the subtree of teh rooted at v; and;

• a pointer to the idle period with minimum length in v’s subtree.

As we explain shortly, the manner in which the data structure is searched depends on

the part of the feasible region (R1 or R2) in which the corresponding strip lies.

The best-fit algorithm consists of two steps: a search for bR1 , the local best fit in region

R1, followed by a search for bR2 , the best fit in region R2. After exploring both regions, the

algorithm returns the overall best fit for the given job, if one exists. Since in this strategy the

algorithm searches for a local best fit in every strip in order to obtain a global optimal, the

order in which this search proceeds is irrelevant. However, for the sake of simplicity in our

implementation we search both regions in a top-bottom fashion.

Step 1: Search in region R1. Since the best-fit among a set of feasible idle periods is the idle

period with the smallest length, the algorithm first identifies the set of feasible idle periods in

the strip, and then retrieves the one with the smallest length. Recall also that all idle periods in

R1 start before rj (see figure 3.2) and hence, meet the feasibility requirement in terms of their

starting time. However, they may or may not be feasible depending on their ending time. To

identify the set of feasible idle periods for a given job j in a strip in R1, the algorithm searches the

secondary tree associated with the strip teh using a simplified version of the min-TIP algorithm.

Min-TIP is similar to the min-LIP algorithm we just described with the difference being that the

search performed is a function of the ending time. More specifically, the algorithm visits every

internal node v in teh whose subtree contains exclusively idle periods with ending time larger

than the earliest time the job can be completed; the algorithm stops as soon as it reaches a leaf.

In terms of complexity, the same arguments presented earlier for min-LIP hold for min-TIP,

therefore, the cost of visiting the O(log n) internal nodes is O(log n) per strip.

For each internal node v visited in tree teh the algorithm computes the local best fit bv

corresponding to the idle periods in v’s subtree. Such an idle period is the smallest idle period

in v’subtree and can be retrieved by means of the pointer stored at v at a cost of O(1). The

algorithm then compares bv to the most up to date bR1 at that particular point in time; if bv

has a smaller length it updates bR1 with bv, otherwise, it discards bv. Recall that retrieving bv

from a given v’s subtree costs O(1); therefore, the overall cost for searching bR1 is O(m log n)
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where m is the number of strips in R1 and is at most m = d rj

2lmin
e.

Step2: Search in region R2. After the algorithm has searched for bR1 it proceeds to search

bR2 in R2. Notice that as an idle period in R2 moves further up (down) from the line segment

between P and P ′ its length increases (decreases), until it reaches the line segment itself where

the length of the idle period is lj . It follows that the best fit in a strip in R2 is the closest idle

period to the line segment between P and P ′. To find such idle period the algorithm performs

a simple binary search on tree tlh. More specifically, it searches for the idle period with the

minimum length larger than the length of the job, lj . Since in R2 there are at most k = d dj

2lmin
e

strips, the overall complexity for searching bR2 in Step 2 is O(k log n).

3.3.4 Implementation of Other Scheduling Strategies

The scheduling strategies we defined in Section 3.2.2 can be implemented by appropri-

ately modifying either the tree data structure or the search algorithm we described above for the

min-LIP strategy. In order to optimize the trailing idle period, the plane must be partitioned

into vertical strips of length M × 2 × lmin,M ≥ 1, and each tree must store the idle periods

in the corresponding strip in increasing order of their ending, rather than starting, times; the

search algorithm is similar to the corresponding algorithm for min-TIP. Finally, the first fit

strategy can be implemented by exploring the horizontal strips in increasing order of index h,

and selecting from each tree the first feasible idle period found.

3.4 Performance Evaluation

We use simulation to evaluate the performance of the various scheduling strategies.

We use the method of batch means to estimate the performance parameters we consider (and

which we discuss shortly), with each batch consisting of thirty simulation runs and each run

lasting until 106 jobs have been submitted to the Grid scheduler. We have also obtained 95%

confidence intervals for all the results, which are shown in the figures.

In our simulation, we assume that job requests arrive as a Poisson process with rate λ.

Job sizes are distributed according to a bounded Pareto distribution. The minimum job size is

set equal to 1, and is taken as the unit of time. The maximum job size is set to 50 time units, and

we vary the mean job size x̄ by changing the value of the parameters of the Pareto distribution.

We let L denote the amount of time that the scheduler S can look “into the future”; in other

words, a job may request to be scheduled at most L units of time in the future. We let the
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deadline dj of job j be uniformly distributed in the interval (rj + lj , rj + lj + q(L − rj − lj)),

where q, 0 ≤ q ≤ 1 is a parameter that controls the “tightness” of the job deadlines. In our

simulations, we let L = 200.

We use four performance metrics in our study. The loss rate is the fraction of jobs that

are dropped due to the fact that their deadline cannot be met. The system utilization is the

fraction of time the n servers are busy serving jobs. The average delay is the mean amount of

time that a job has to wait beyond its ready time until it starts execution; note that dropped

jobs do not contribute to the average delay. Finally, the fairness ratio is a measure of how

fairly jobs of different sizes fare in terms of drop probability under a given scheduling algorithm.

To compute the fairness index, we partition the domain [1, 50] of the job size distribution into

B = 100 bins of equal size. Let zi be the number of arriving jobs that fall into the i-th bin

during a certain simulation run, and let z′i ≤ zi be the number of these jobs that are scheduled

successfully. Let wi be the fraction of jobs in the Pareto distribution that fall in the i-th bin.

The fairness index F of a scheduling strategy is calculated as:

0 ≤ F =
B∑

i=1

wi
z′i
zi

≤ 1. (3.1)

Clearly, the closer the value of the fairness index is to one, the more fair the scheduling discipline

is.

We compare five scheduling strategies: first-fit, min-LIP, min-TIP, best-fit and LACT.

The LACT algorithm, which we described in Section 3.1, does not consider the idle periods

created at each server, and hence suffers the effects of capacity fragmentation; we consider this

algorithm as a baseline case. Although we do not show any results for the max-LIP and max-

TIP scheduling algorithms, their overall behavior is similar to that of min-LIP and min-TIP in

that they are efficient in utilizing the available system capacity.

Figures 3.4-3.5 plot the loss rate, utilization, average delay, and fairness ratio, respec-

tively, for the five scheduling strategies against the system load ρ. The system load is calculated

using the familiar from queueing theory expression ρ = (λx̄)/n. For the results shown in these

figures, we let the number of servers n = 20, the mean job size x̄ = 3.28, and the tightness of

the job deadlines q = 0.1. Note that the load values in the figures range from low (ρ = 0.1) to

very high (ρ = 1.1) at which the system is more than 100% loaded. Also, the 95% confidence

intervals are quite narrow for all curves shown.

From Figure 3.4 we can see that the loss rate increases with the system load for all five

scheduling algorithms, as expected. However, the LACT algorithm performs significantly worse
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Figure 3.4: Loss rate against system load ρ, n = 20, x̄ = 3.28, q = 0.1
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Figure 3.5: Fairness ratio against system load ρ, n = 20, x̄ = 3.28, q = 0.1

than the other four strategies at all but very low loads; this result is not surprising given the

fact that this algorithm does not consider the idle periods in the servers. Under the other four
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Figure 3.6: Utilization against system load ρ, n = 20, x̄ = 3.28, q = 0.1

strategies, jobs experience low loss rates even for load values close to 1; in fact, min-LIP and

min-TIP have almost identical behavior with loss rates close to zero for loads up to ρ = 0.8.

The best-fit strategy experiences low loss rate but performs slightly worse than min-LIP and

min-TIP. This can be explained by the fact that in the best-fit strategy jobs are scheduled to

start execution at the starting time of the idle period whenever possible. This results on the

creation of small trailing idle periods, which may fail to accommodate incoming jobs; hence

increasing the loss rate in the system. The first-fit algorithm also experiences low loss, but it

performs worse than min-LIP or min-TIP for all load values less than 1. Therefore, min-LIP

and min-TIP are clearly the best algorithms for typical operating regimes (i.e., at medium to

medium-high loads). Note also that the loss rate for two algorithms is less than 10% even at a

load of ρ = 1.1. This result can be explained by the fact that when the system is overloaded,

large jobs have higher probability to be dropped than small jobs, under these two algorithms;

hence at ρ = 1.1, the dropped jobs account for more than 10% of the offered load.

Figure 3.6, which plots the system utilization versus the load, confirms our observations

regarding the relative performance of the five algorithms. As expected, utilization increases

with the system load initially, but at some point the curves level off. LACT shows the lowest

utilization, a result consistent with the high loss rates we observed in Figure 3.4. Min-LIP,

best-fit and min-TIP again have the best performance, followed by first-fit. Moreover, followed
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Figure 3.7: Average delay against system load ρ, n = 20, x̄ = 3.28, q = 0.1

closely by the best-fit curve, the behavior of the min-LIP and min-TIP curves is almost identical,

with utilization increasing almost linearly with the load values. This result indicates that all

three algorithms are capable of identifying and using idle periods to schedule jobs, thus ensuring

that fragmentation of system capacity does not compromise overall performance. We also note

that the difference in utilization between first-fit, on the one hand, and min-LIP, min-TIP and

best-fit, on the other hand, is higher than the difference in loss rates would suggest. The higher

difference in utilization can be explained by the fact that the first-fit strategy is less fair than the

other three, and tends to drop larger jobs with higher probability; we will discuss this fairness

issue in more detail shortly.

Let us now turn to Figure 3.7 which plots the average job delay against the system load.

As we can see, jobs experience the lowest delay under the first-fit strategy. This result agrees

with intuition: first-fit assigns a new job to the earliest feasible idle period, thus minimizing

delay. The best-fit strategy, on the other hand, results in high delays for moderate to high

loads. This is consistent with the results obtained for the loss rate (see Figure 3.4). We also

observe that the average delay for min-LIP is higher than for first-fit but lower than under min-

TIP. Recall that min-LIP first searches for the earliest feasible idle period in region R2 (i.e., for

an idle period starting after the job’s ready time). Once such an idle period is found, the job

is scheduled to start at the beginning of this period. Consequently, the starting time of the job
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can be no earlier than under first-fit, hence the longer delay. On the other hand, min-TIP also

searches first for the earliest idle period starting after a job’s ready time. But unlike min-LIP,

it schedules the job at the end of this idle period; shifting the job so that its completion time

coincides with the end of the idle period causes higher delay than min-LIP. The average delay

curve for the LACT algorithm lies between the corresponding curves for min-LIP and min-TIP

for most system load values of interest. Note that the average delay for LACT increases up to

ρ = 0.4, at which point LACT losses start to accelerate (refer to Figure 3.4). Beyond that point,

average delay under LACT starts to decrease; however, this behavior is a side effect of the high

losses incurred, rather than an indication of an inherent quality of the algorithm.

Overall, the average delay values in Figure 3.7 are relatively low, and correspond to

a fraction of the mean job size x̄ = 3.28 for all algorithms. More importantly, average delay

for the four strategies of interest (i.e., first-fit, min-LIP, min-TIP and best-fit) does not vary

significantly with load, although it increases slightly at high loads. One exception is the min-

TIP strategy which shows a moderate decrease in delay as ρ increases from low to moderate

values. This behavior can be explained as follows. At low loads, min-TIP can find feasible idle

periods starting after the jobs’ ready time, and shifts the jobs to the end of these idle periods

incurring a relatively high delay. At higher loads, on the other hand, and due to the relatively

tight deadlines, it becomes more difficult to find such idle periods. In case of failure, min-TIP

(similar to min-LIP) then searches for feasible idle periods that start before the jobs’ ready time.

Since these idle periods start earlier, the average delay under min-TIP tends to decrease with

the load.

Figure 3.5 plots the fairness index, calculated by expression (3.1), against the system

load. As we can see, the fairness index of the LACT algorithm suffers a precipitous drop starting

at ρ = 0.4, the point where its losses begin to accelerate. This increase in unfairness is primarily

due to the fact that larger jobs experience a significantly larger drop probability than smaller

ones. The first-fit strategy is more fair than LACT, but it starts being unfair to jobs of larger

size at loads as low as ρ = 0.4, compared to min-LIP and min-TIP; as a result, its utilization of

the system capacity starts suffering from that point, as illustrated in Figure 3.6. Similarly, the

best-fit strategy becomes less fair than the first-fit strategy as the load increases. The min-LIP

and min-TIP strategies, on the other hand, achieve fairness index values close to 1 even at high

system loads, with min-TIP slightly outperforming min-LIP. The fact that min-LIP and min-TIP

remain fair across a wide range of load values is an important property of these algorithms, and

indicates that they are capable of exploiting the idle periods in an effective manner. Moreover,

their ability to treat all jobs fairly implies that users will not need to employ strategies such as
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Figure 3.8: Loss rate against mean job size x̄, n = 20, ρ = 0.6, q = 0.1

splitting a large job into several smaller ones, to avoid discrimination. Note that such strategies

impose an additional overhead to the system in the form of additional memory usage (needed

to store the additional idle periods created) and higher running time (due to the larger number

of jobs requests, each request needing to search a larger data structure).

In addition to providing insight into the relative behavior of the five strategies due to

the different optimization objectives considered, Figures 3.4-3.5 illustrate that properly designed

scheduling algorithms can effectively overcome the obstacles of capacity fragmentation to deliver

high performance in terms of metrics that reflect the requirements of both users and service

providers. Specifically, the min-LIP and min-TIP algorithms cater to the user needs by ensuring

that job deadlines are met in a fair manner while keeping both loss rates and average delay low;

at the same time, they deliver high system utilization, an important goal for service providers.

The next three Figures 3.8-3.9 illustrate the behavior of the loss rate as we vary the

values of three important system parameters, namely, mean job size x̄, deadline tightness q,

and number of servers n, respectively; the other parameters in the experiments take values as

specified in the corresponding figure caption.

Figure 3.8 plots the loss rate for the five scheduling algorithms against the mean job

size for n = 20 servers and system load ρ = 0.6. Min-LIP and min-TIP clearly outperform

the other three algorithms, and their loss rate remains well below 1% across the range of mean
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Figure 3.10: Loss rate against number of servers n, x̄ = 3.28, ρ = 0.9, q = 0.1

job size values shown in the figure; the performance of best-fit is also close. In fact, mean job

size has little effect on the loss rate for these algorithms. We have also found that utilization
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remains close to 60% for these two algorithms, and the fairness index close to 1. First-fit has a

higher loss rate, which increases with the mean job size. Furthermore, we have found that the

unfairness of first-fit also increases with the mean job size, to the degree that system utilization

drops much more than the loss rate suggests, and in fact, it drops below the utilization of the

LACT algorithm for x̄ > 6. Finally, the loss rate of LACT is the highest, but it decreases as x̄

increases. While this behavior may seem counter-intuitive, it can be explained by noting that for

constant load, increasing x̄ implies a lower job arrival rate. Fewer job arrivals result in fewer idle

periods, hence a lower degree of fragmentation of the available capacity. Since LACT performs

worse with increasing degree of fragmentation, its performance improves as the mean job size

increases.

In Figure 3.9 we plot the loss rate against the deadline tightness q. Recall that the

larger the value of parameter q, the further in the future the deadline of each job lies, and the

more flexibility an algorithm has in scheduling jobs. As we can see in the figure, the loss rate

of the min-LIP and min-TIP strategies decreases as the value of q increases from 0 (the case

of immediate deadlines) to 0.1; after that point, the loss rate remains at zero. The loss rate

of best-fit and first-fit also decreases initially, and then remains low throughout the range of

values of q. This behavior indicates that these four policies, which consider the idle periods

when scheduling jobs, are effective throughout the range of deadlines considered in our study;

their performance is affected, although not significantly, only when deadlines are very “tight.”

On the other hand, it is evident that the LACT algorithm is very sensitive to the tightness of

the deadlines: its performance is poor when q is small, but it improves dramatically as the value

of q increases, in which case the algorithm can push the starting time of jobs further in the

future without missing their deadlines. Of course, this improvement in performance comes at

the expense of significantly higher delay (not shown here due to space constraints).

Finally, Figure 3.10 plots the loss rate against the number n of servers in the Grid. The

relative behavior of the various curves is similar to the one observed earlier: min-LIP and min-

TIP clearly outperform the other four strategies and have loss rates close to zero at larger values

of n, while LACT has by far the worse performance. In general, the loss rate decreases with

the number of servers for all strategies, but shows a significant improvement for LACT. This

behavior can be explained by noting that at constant load, as the number of servers increases,

the degree of fragmentation tends to decrease, hence the performance of LACT improves. We

also emphasize that the loss rate for LACT is an order of magnitude higher than the loss rates

of all three; min-LIP, min-TIP and best-fit throughout the values of n used in this experiment.
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3.5 Concluding Remarks

We have applied techniques from computational geometry to develop a suite of schedul-

ing strategies that allocate resources in a Grid environment using a range of optimization criteria.

We also presented efficient implementation of the various algorithms that scale to large Grid

systems. We have presented results from extensive simulation experiments to demonstrate that

our algorithms are simultaneously user- and system-centric: they are able to schedule resources

to meet the deadlines imposed by users and maximize system utilization, while experiencing low

job drop rates and low delays. Our algorithms also allocate resources to users in a fair manner.

Our work provides a practical and efficient solution to the problem of scheduling resources in

the emerging highly dynamic Grid environments.
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Chapter 4

Efficient Scheduling Algorithm for

Grids - heterogeneous

In the previous chapter we developed efficient algorithms for advance reservations in

homogeneous Grids. These algorithms are effective in meeting time requirements (e.g., dead-

lines), may be adapted to employ several optimization criteria for scheduling jobs, and their

low running times make them practical for large Grid environments. In this chapter we ad-

dress the issue of meeting application time requirements in Grid environments with resources

of heterogeneous capabilities (e.g, as in the case of computation servers with varying processing

power).

We consider an environment where users submit jobs dynamically, and these jobs may

start at a future time and must be completed within a certain deadline. We first investigate

the impact of heterogeneity on the scheduling of resources, and conclude that heterogeneity of

resources needs to be considered in order to achieve appropriate system and user performance.

Based on this observation, we then develop an efficient heterogeneity-aware scheduling algorithm

for advance reservations. We also describe how to apply techniques from computational geometry

to develop data structures that allow the service provider to manage efficiently the set of advance

reservations and handle effectively the resulting resource fragmentation.

Previous work in scheduling have considered resource heterogeneity in the context of

Grids. In [48, 49, 59] authors show how laxity and fuzziness in the reservation requests may be

exploited to address some of the drawbacks of advance reservations. Two of the most recent

major works on advance reservations in Grids are [50] and [35]. In [50], the authors propose a

multi-objective genetic algorithm formulation for selecting the set of resources to be provisioned

that optimizes the application performance while minimizing the resource costs. In [35] a cost-



37

aware resource model is presented in which reservation for each application task is performed

separately by negotiating with the resource provider. In [51] the authors present a broker service

for the Grid resources that takes into account the fact that deadline and budget are specified,

and then optimizes the usage of resources only by considering the current state of the resources

but without any planning horizon.

The impact of resource heterogeneity has been investigated in contexts other than

Grids. In [74] the authors exploit the heterogeneity found in an HPC (High Performance Com-

puting) environment by dividing a task into subtasks and then mapping the latter to resources

that best meet their requirements. This work assumes offline scheduling and does not support

advance reservations; our work deals with online scheduling and allow users to schedule jobs in

advance. In [75] the authors proposed a general framework to quantify the worst-case effect of

increasing heterogeneity in models of parallel systems with finite total capacity. An important

contribution of this work was a model to characterize resource heterogeneity which we adopt in

our work.

The rest of the chapter is organized as follows. In Section 4.1 we describe the online

scheduling problem being considered. In Section 4.2 we make a case for heterogeneity-aware

algorithms in Grids. We perform a simple experiment to show that resource heterogeneity have

a positive impact in system and user performance when scheduling algorithms are designed to

accommodate for resource heterogeneity. In Section 4.3 we use novel techniques from compu-

tational geometry to represent the scheduling problem and facilitate the design of an efficient

heterogeneity-aware scheduling algorithm. We provide details on the design and implementa-

tion of a heterogeneous-aware scheduling algorithm in Section 4.4. Several directions for further

improving the performance of the scheduling algorithm that are subject of ongoing research are

presented in Section 4.5. In Section 4.6 we evaluate the performance of our algorithm through

simulation, and we conclude in Section 4.7.

4.1 Problem Description

Consider a scheduler S for a Grid with n servers which may be geographically dis-

tributed in a network. We consider a heterogeneous environment in that server i has service

rate µi, where service rate refers to the amount of work a server can perform per unit of time.

We also assume network delays are negligible. A user with job j requiring service submits a

request to the scheduler. The request is characterized by a three-parameter tuple (rj , lj , dj),

where:
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1. rj is the ready time of the job, i.e., the earliest time the job can be made available to the

Grid for processing;

2. lj is the size of the job, i.e, the amount of work the job requires; and

3. dj(≥ rj + lj) is the deadline of the job, i.e., the latest time by which the job can be

completed to provide any utility to the user.

The deadline is a measure of the quality of service required by the user. We assume

that deadlines are hard, in that a user receives utility only if the job completes service by its

deadline. Therefore, if S determines that the deadline cannot be met, it drops the job and notifies

its user accordingly. Note that this restriction may be relaxed with minimal modifications to

our algorithm; in Section 4.5 we describe a set of mechanisms that may be used to re-negotiate

and re-plan advance reservations in order to minimize the number of jobs that are dropped.

In our model, the availability of resources is represented by time intervals during which

servers are idle. We refer to these intervals as idle periods in this paper. We say that an idle

period is feasible for a given job j if it can accommodate j within its deadline dj . The feasibility

of an idle period k for a given job j is determined by both the service rate of the server associated

with the idle period and its duration. Therefore, we characterize an idle period k on a server i

with service rate µi by a three-parameter tuple (stk, etk, ck), where:

• stk is the starting time of the idle period;

• etk is the ending time of the idle period; and

• ck = µi × (etk − stk) is the nominal capacity of the idle period, i.e., the amount of work

that server i can perform during idle period k.

Note that idle periods in slow (respectively, fast) servers may have a long (respectively, short)

duration but small (respectively, large) nominal capacity. Moreover, the nominal capacity ck of

an idle period k represents the maximum job size that it can accommodate, assuming that the

job is scheduled to start execution exactly at time stk. As time progresses, the nominal capacity

ck of the idle period decreases at a rate equal to its server’s rate µi. Consequently, if no job is

allocated to the idle period by time t = stk, then the maximum job size that it can accommodate

decreases linearly at rate µi. Therefore, the nominal capacity of idle periods belonging to fast

(respectively, slow) servers expires at a faster (respectively, slower) rate.

We consider the online scheduling problem whereby users submit service requests to

S at random instants. We assume that S maintains a schedule which records, for each server
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Figure 4.1: (a) Schedule of a 2-server system as a timetable, and (b) geometric representation
of the idle periods and the new job.

i, the time periods in the future during which the server is reserved for jobs that have already

been accepted to the system. In essence, this schedule represents the set of advance reservations

that have been made, and it guarantees that server resources will be available to the accepted

jobs at specific future times.

Figure 4.1(a) shows an example schedule for a 2-server system in which server i has

rate µ1 = 1, and server 2 has rate µ2 = 0.5. The schedule is in the form of a timetable, and

shows that at the current time (i.e., t = 0), there are four jobs scheduled for server 1: the job

currently in service which will end at time t1, job A which has reserved the server from time t4

to time t5, job B which has reserved the server from time t6 until time t7, and job C which is

scheduled from time t11 to time t12. Similarly, there are two jobs scheduled for server 2. The

figure also shows a new job j requesting service. The job has ready time rj = t3 and deadline

dj . There are two representations of the new job. The representation at the top has a shorter

duration and shows the new job as seen by server 1, while the one below has a longer duration

(i.e., double that at the top) and shows the job as seen by server 2.

When a service request (rj , lj , dj) for a new job j arrives, S immediately runs an

algorithm to determine whether it is feasible to schedule the job so as to meet its deadline. If

so, then S uses a set of criteria to select one of the (possibly multiple) servers that can handle

this job, updates its schedule, and returns a reference to this server to the user; otherwise, the

job is dropped. The scheduling decision impacts the performance perceived by users as reflected
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by the fraction of jobs meeting (or missing) their deadlines and the response time of the jobs.

It also impacts the overall system performance as reflected by the system utilization, which is a

measure of how well the overall service capacity of the system is used. The challenge, therefore,

is to develop efficient online scheduling algorithms that minimize the fraction of dropped jobs

while maximizing utilization.

4.1.1 Computational Heterogeneity

To incorporate computational heterogeneity into our framework we use the model in-

troduced in [75]. In this model the authors use majorization partial order to compare the

imbalance, i.e., heterogeneity, of capacity distributions. The majorization partial order, º, is

defined as follows. Given two nonnegative vectors corresponding to the service rates of two

n-servers systems C = (µ1, µ2, µ3, · · · , µn) and C ′ = (µ′1, µ
′
2, µ

′
3, · · · , µ′n), we have C ′ º C when

∀k
k∑

i=1

µ′[i] ≥
k∑

i=1

µ[i] and
n∑

i=1

µ′i =
n∑

i=1

µi (4.1)

where µ[i] denotes the i-th largest component of C. We say that the computational capacity

distribution CA of a system A is more heterogeneous than the computational capacity CB of a

system B whenever CA º CB.

We say that a Grid system is (H,n)-heterogeneous, H ¿ n, if the n servers are parti-

tioned in H groups such that servers in group h, h = 1, · · · ,H, have the same service rate µh.

Note that most existing Grids follow this model as they consist of a collection of clusters of identi-

cal processors. Thus, an (H, n)-heterogeneous system has n servers with H different rates. For a

given (H, n)-heterogeneous system we may generate a range of service rate distributions that are

more or less heterogeneous according to the majorization partial order in expression (4.1). We

let L denote the levels of heterogeneity, i.e., the number of service rate distributions considered

for a (H, n)-heterogeneous Grid, labeled in order of increasing heterogeneity:

(H, n)L º · · · º (H,n)1 º (H, n)0 (4.2)

where we use (H, n)0 to denote the completely homogeneous system, i.e., one in which all n

servers have the same rate µ. We use this model in the experimental studies we report in

Sections 4.2 and 4.6.
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Figure 4.2: Comparison of heterogeneous aware and unaware algorithms: (a) Work loss rate and
(b) utilization against system load
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4.2 The Case for Heterogeneity-Aware Algorithms

To investigate the impact of heterogeneity in resource allocation mechanisms in Grid en-

vironments we perform two different experiments. We refer to these experiments as heterogeneity-

aware (HA) and heterogeneity-unaware (HU) experiments. In both experiments we consider the

problem described in Section 4.1 and use the same scheduling algorithm and data structure;

the only difference being that in one experiment we adapt the algorithm and data structure to

accommodate heterogeneity.

More specifically we consider the well-known first-fit (FF) scheduling algorithm, and

we use a linked-list data structure to store idle periods. In the heterogeneity-unaware (HU)

experiment, all idle periods over all servers are stored in a single linked list in ascending order

of their starting times. To schedule a new job, the FF algorithm searches the linked list and

returns the first feasible idle period for the job; we refer to this algorithm as FF-HU. In the

heterogeneity-aware (HA) experiment, the idle periods are stored in H linked lists, where H

denotes the number of different rates in the system. Specifically, linked list h, h = 1, · · · ,H,

stores the idle periods over all servers with rate µh in ascending order of their starting times.

To schedule a new job, the FF algorithm considers the H lists in some order, and searches the

first linked list for a feasible idle period; if no such idle period is found, the algorithm continues

to search the next list in the order, and so on. The FF-HA algorithm terminates when the first

feasible idle period is found, or when all the lists have been searched unsuccessfully. Clearly,

the order in which the FF-HA algorithm considers the H linked lists will have an impact on

performance.

We used simulation to compare the performance of the FF-HU and FF-HA algorithms;

the details of the simulation setup are described in Section 4.6. Following the model of Sec-

tion 4.1.1, we consider a (H, n)-heterogeneous Grid with n = 120 servers divided into H = 3

groups, with the server in each group h, h = 1, 2, 3, having the same rate µh. We created L = 4

(H, n)-heterogeneous systems by selecting the rate µh of each server group within each system

so that L = 4 refers to the most heterogeneous system with respect to expression (4.1) and

L = 1 to the least heterogeneous one.

Figure 4.2 plots the loss rate and utilization against system load, respectively. Each

figure shows two sets of four plots, one set for the FF-HU algorithm and one for FF-HA; in

this case, FF-HA considers the H lists of idle periods in increasing value of the rate µh of

the corresponding servers. Each plot within a set corresponds to one of the L = 4 levels of

heterogeneity, i.e., one of the (H, n)-heterogeneous systems obtained as we described above. We
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have obtained results for other performance measures, e.g., waiting time, but do not include

them here as they exhibit similar trends.

As we can see, for a given level of heterogeneity, the heterogeneity-aware algorithm (FF-

HA) outperforms the heterogeneity-unaware one (FF-HU) across the spectrum of system loads.

We also observe that the performance of each algorithm improves as the system becomes more

heterogeneous, despite the fact that the total service rate is the same for all L = 4 heterogeneity

levels. This phenomenon is due to the effect of statistical multiplexing, and is discussed in

more depth in Section 4.6. These results, obtained with a basic scheduling algorithm and data

structure, suggest that computational heterogeneity may have a significant impact on both user

and system performance metrics and should be taken into account when designing scheduling

algorithms. Nonetheless, taking heterogeneity into account comes with a price since it adds

complexity to the problem and hence to the algorithms. For instance, although the worst-case

running time of the FF-HA and FF-HU algorithms is the same (linear in the number of idle

periods), the average running time of FF-HA can be significantly longer than that of FF-HU

(since it may have to traverse several lists before it finds a feasible period that might be stored

near the head of the single list maintained by FF-HU). The challenge, therefore, is to design

scheduling algorithms that are both heterogeneity-aware and efficient; this is the subject of the

next two sections.

4.3 A Geometric Model for Advance Reservations

In this section we employ techniques from computational geometry to model the prob-

lem we introduced in Section 4.1. We then use this model to develop an algorithm for advance

reservation of resources, along with an associated data structure for storing and accessing effi-

ciently the set of idle periods.

Without loss of generality, in the following discussion we make the assumption that

the service rate µi of each processor i is such that 0 < µi ≤ 1. This assumption allows us to

define the size lj of a job j as the amount of time for this job to complete on a server of rate

µ = 1. Clearly, the duration of the job on a server of rate µi < 1 is then equal to lj/µi.

4.3.1 Geometric Representation of Idle Periods and Jobs

We represent idle periods and jobs on the first quadrant of a Cartesian coordinate sys-

tem in which the x axis represents time and the y axis represents nominal capacity. Figure 4.1(b)

illustrates the geometric representation of the idle periods and new job of Figure 1(a). A job j



44

characterized by the tuple (rj , lj , dj) is represented in this coordinate system as a line segment

between two points P = (rj , lj) and P ′ = (dj − lj , lj). Since, in Figure 4.1(a), the new job is

defined by the tuple (t3, lj , dj), the two endpoints of the line segment representation of this job

in Figure 2(b) are P = (t3, lj) and P ′ = (t10 = dj − lj , lj). As defined, point P represents the

earliest possible starting time and required capacity for this job if it were scheduled on the fastest

server, i.e., one with rate µ = 1; similarly, point P ′ corresponds the latest possible starting time

and required capacity for this job to be feasibly completed on the fastest server. Note that

although we assume that servers may have different capacities, we use a single representation

for each job j, namely the line segment with respect to the server of rate µ = 1.

An idle period k characterized by the tuple (stk, etk, ck) is also represented in the

coordinate system as a line segment between two points, k1 = (stk, ck) and k2 = (etk, 0). Recall

that ck denotes the nominal capacity of idle period k. Therefore, point k1 represents the point in

time (i.e., starting time) at which the idle period has the largest nominal capacity, and point k2

the point in time (i.e., ending time) at which the idle period has reached zero capacity. The slope

of the line segment representing idle period k is equal to −µi, where µi is the rate of the server

corresponding to this idle period; this representation clearly shows that the nominal capacity

of the idle period decreases at rate µi. Consider, for example, idle period x in Figure 4.1(a)

with starting time stx = t1, ending time etx = t4, and nominal capacity cx. This idle period

is represented in the plane by the line segment between the two points x1 = (stx, cx) and

x2 = (etx, 0). The slope of the line segment is -1, since the rate of server 1 is µ1 = 1. Idle

periods y, z, and w are similarly represented by the line segments shown in Figure 4.1(b). Note

also that the slope of the line segment corresponding to idle periods y and z is -1, while the one

corresponding to w is -0.5 since the latter is on server 2 of rate µ2 = 0.5.

Feasibility Criteria. We may now use the above geometric representation to determine

whether an idle period is feasible for a new job. Consider an idle period k with tuple (stk, etk, ck)

represented by the line segment defined by points k1 and k2, as explained earlier, and a new

job j with tuple (rj , lj , dj) that is represented by a line segment between points P and P ′. Idle

period k is feasible for job j if and only if both of the following conditions are satisfied.

1. Starting time feasibility. Let i be the server corresponding to idle period k, and µi be its

service rate. For the idle period k to be feasible for the new job j, its starting time stk

has to be sufficiently early for the server to be able to complete the job before its deadline,

i.e.:

stk ≤ dj − lj
µi

(4.3)
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Expression (4.3) is necessary but not sufficient for feasibility, since the idle period k may

end early, before job j can complete on server i. Returning to Figure 4.1, we observe

that idle period x satisfies the above condition with respect to the new job. However, the

residual capacity of this idle period at the time the new job arrives is not sufficient to

accommodate it.

2. Capacity feasibility. Assuming that the starting time feasibility is satisfied, an idle period k

is feasible for a new job j if the line segment representing k lies above or intersects with, the

line segment representing j. Equivalently, this condition is satisfied if the leftmost endpoint

of the line segment representing the new job lies below the line segment representing the

idle period. In Figure 4.1(b) we see that idle period y does not satisfy this condition as its

line segment lies below the line segment representing the new job; hence, y is not feasible

for the new job.

In Figure 4.1(b), the two conditions are satisfied for both idle periods w and z with

respect to the new job represented by the line segment between points P and P ′. Consequently,

idle period w has enough capacity to accommodate the new job, as long as the latter starts

before the time instant at which the corresponding lines intersect; similarly for idle period z.

Our objective is to develop techniques to identify efficiently feasible idle periods for

each arriving job request, without having to examine all idle periods. As we have shown in [76],

we can efficiently find idle periods that meet the starting time feasibility criterion by organizing

the idle periods in an appropriate balanced tree structure that can be searched in logarithmic

time. However, identifying idle periods that meet the capacity requirement, e.g., determining

line segments lying above point P in Figure 4.1(b), requires that each idle period be examined

separately. This is due to the fact that to perform this test the equation representing each line

segment needs to be evaluated for the coordinates of the given point.

Next, we employ techniques from computational geometry to obtain an equivalent

representation of idle periods and new jobs that allows us to develop an elegant solution to the

problem of testing for the capacity feasibility criterion.

4.3.2 Duality Transform and Duality Plane.

Geometric duality [71] refers to the direct mapping between a point p (respectively,

line l) and a line p? (respectively, point l?). The duality transform maps objects from the primal

plane to the dual plane. We now describe a simple duality transform we use in the remaining

of this paper. Let p := (px, py) be a point in the plane. The dual of p, denoted p?, is the line
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Figure 4.3: (a) Primal plane and (b) dual plane representations of the idle periods and new job
of Figure 4.1(a)

defined as

p? := (y = pxx− py) (4.4)

where px and py are p’s x and y coordinates, respectively. The dual l? of a line l := (y = mx+b)

is the point p such that p? = l, that is,

l? := (m,−b) (4.5)

where m and b are the slope and y-intercept of line l, respectively. One major advantage of this

particular duality transform is that it is order preserving, that is, point p lies above line l if and

only if point l? lies above line p? [71].

Let us now return to our original problem and the geometric representation of idle

periods and jobs shown in Figure 4.1(b). We transform this primal plane to the dual plane by

mapping the line lk corresponding to an idle period k to a point l?k, and the point P corresponding

to the earliest time new job j can start execution, to a line P ?. Using basic geometry principles

we find that for any idle period k, the value of b in expression (4.5) is µietk. Since the slope m

of idle period k is −µi, where µi is the rate of the corresponding server, expression (4.5) can be

written as:

l?k := (−µi,−µietk). (4.6)
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To find P ?, we substitute px and py in expression (4.4) with rj and lj , respectively:

P ? := (y = rjx− lj). (4.7)

Figure 4.3(b) shows the dual plane corresponding to the primal plane in Figure 4.3(a);

the latter figure is identical to Figure 4.1(b), and is repeated here for convenience. As we can

see, the idle periods are now mapped to points in the dual plane. Specifically, all idle periods

on server 1 of rate µ1 = 1 are now points with y coordinates equal to −µ1 = −1; similarly, the

idle period on server 2 of rate µ2 = 0.5 has y coordinate equal to −µ2 = −0.5. Point P , on the

other hand, which represents the earliest time the new job can start execution is represented on

the dual plane as a line.

Consider now the capacity feasibility criterion we defined above. In the primal plane

of Figure 4.3(a), it is clear that the idle period x is not feasible for the new job, as point P lies

above the line segment representing x. Due to the order preservation of the duality transform,

in Figure 4.3(b) we see that the point corresponding to idle period x also lies above the line

representing point P . Similarly, idle periods y and w are feasible for the new job, and their cor-

responding points in the dual plane lie below the line representing point P . Therefore, checking

for capacity feasibility in the dual plane requires checking whether the points representing idle

periods lie below the line representing the new job. This test can be performed efficiently by

organizing the idle periods (points) lying on the vertical line x = −µ (i.e., those corresponding

to servers with rate µ) in a search tree structure, and searching for those with a y-coordinate

less than that of the point at which the line representing the new job intersects the line x = −µ;

this search structure is described in the next section.

The observant reader will have noticed that, in the dual plane of Figure 4.3(b), the

point representing idle period y lies below the line representing point P ; however, a look at the

primal plane of Figure 4.3(a) indicates that idle period y is not feasible. Note that extending

the line segment representing idle period y in the primal plane would result in a line lying above

point P , hence the dual plane representation is consistent in this regard. The issue here is that

idle period y starts too late to be feasible, therefore it will not pass the starting time feasibility

criterion above. Consequently, both the starting time and capacity feasibility criteria must be

checked to ensure that an idle period is feasible.
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4.4 Algorithm and Data Structure Description

We now introduce an efficient algorithm for finding a feasible idle period for a new

job in a (H,n)-heterogeneous system with advance reservations. The algorithm is derived from

the heterogeneity-aware FF-HA algorithm we described in Section 4.2, and will refer to it as

FF-HA+. The FF-HA+ algorithm differs from FF-HA in that it maintains H balanced trees,

rather than H linked lists, such that balanced tree Th, h = 1, · · · ,H, stores information about

the idle periods over all servers with rate µh. Similar to FF-HA, when a new job arrives, FF-

HA+ searches the balanced tree structures in ascending order of server rate, and returns as soon

as it finds a feasible idle period.

4.4.1 Balanced Tree Structure

The FF-HA+ algorithm maintains H 2-dimensional binary search trees to organize the

idle periods in a (H, n)-heterogeneous system, one such tree Th, h = 1, · · · ,H, for each distinct

server rate value µh. Whenever the algorithm needs to search the idle periods available in servers

associated with rate µh, the associated tree Th is searched.

We will refer to the first and second dimension trees of Th as T primal
h and T dual

h . As

their name indicates, they organize the idle periods according to their parameterizations on the

primal and dual planes, respectively. More specifically, tree T primal
h is used to select idle periods

that meet the starting time feasibility criterion, and tree T dual
h is used to select among these idle

periods the ones that meet the capacity feasibility criterion.

Let us now describe the 2-dimensional tree Th more in detail. In tree T primal
h , the

actual idle periods are in the leaf nodes, arranged in ascending order of their starting time. A

leaf node corresponding to idle period k stores the following information:

• the starting time of k;

• the ending time of k; and

• auxiliary data, such as the identity of the corresponding server.

Internal tree nodes store information regarding the idle periods in their subtree. This

information is used to navigate the tree and locate idle periods appropriate for the new job. The

information at an internal node v consists of:

• the median starting time of the idle periods stored in the subtree of T primal
h rooted at v;

and
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• a pointer to the secondary priority search tree T dual
h containing idle periods.

Tree T dual
h stores the idle periods sorted in descending order of the y-coordinate of their

dual representation, that is, of the corresponding point in the dual plane. Each intermediate

node v in T dual
h stores the following information:

• the median y-coordinate of the dual representation of the idle periods stored in the subtree

rooted at v; and

• a pointer to the idle period in v’s subtree with the maximum nominal capacity.

4.4.2 Searching the Balanced Tree Structure

Consider a request to schedule a new job j with parameters (rj , lj , dj). The FF-HA+

algorithm searches the H balanced trees as we explained earlier, and returns the first feasible

idle period found. We now describe how the search of balanced tree Th is performed; this process

is identical for all trees Th, h = 1, · · · , H. Specifically, the search proceeds in two steps:

1. In the first step, the algorithm traverses the tree T primal
h and marks the intermediate nodes

v whose subtrees contain idle periods that meet the starting time feasibility criterion.

2. In the second step, the algorithm searches the secondary trees T dual
v at each intermediate

node v marked during the first step, to locate the subset of idle periods that meet the

capacity feasibility criterion.

Step 1: Search in T primal
h . In this step, the algorithm identifies idle periods that meet the

starting time feasibility criterion expressed in (4.3). To this end, we employ a standard search

algorithm which starts at the root node and compares the quantity in the right-hand side of (4.3)

to the median starting time stored at each internal node v. If the median starting time is smaller,

then all the idle periods stored in v’s left subtree meet the first feasibility criterion; the algorithm

marks the left subtree and proceeds to search the right subtree. If the median starting time of

the tree rooted at v is larger, then we can safely conclude that all the idle periods in the right

subtree are infeasible and proceed recursively to search the left subtree of v. The algorithm

returns the set of marked intermediate nodes as soon as it reaches a leaf, and proceeds to Step 2

described below. If no intermediate node is marked, the FF-HA+ strategy continues to search

in the 2-dimensional tree Th+1 corresponding to the next larger value of server rate.

Step 2: Search in T dual
v . In this step, the algorithm searches the idle periods meeting the

starting time feasibility criterion, to identify the ones that also satisfy the capacity feasibility
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criterion. To this end, the algorithm searches each of the subtrees rooted at the intermediate

nodes marked in Step 1 and returns as soon as it finds one feasible idle period (if one exists).

We will refer to T dual
v as the secondary tree, i.e., the dual tree, associated with marked node v.

The algorithm starts at the root of T dual
v and compares the median y-coordinate stored at each

internal node u to the y-coordinate of the point in the dual plane at which the line corresponding

to the new job intersects the vertical line x = −µh (refer also to Figure 4.3(b)). If the latter

value is smaller then it can be concluded that all the idle periods in the left subtree are above

the line, and hence are infeasible; the algorithm then recursively searches u’s right subtree. If

the former value is smaller, then all the idle periods in the right subtree of u are feasible, and

there may also exist feasible idle periods in its left subtree. In this case, the algorithm accesses

the idle period with the maximum capacity in the right subtree by following the pointer stored

at node u. If this idle period is feasible, the algorithm returns it and assigns it to the new job.

Otherwise, the search continues recursively with the left subtree of u. If the algorithm reaches a

leaf, then no feasible idle period exists in the given subtree and the algorithm continues searching

the next tree marked in Step 1.

Running time complexity. In the worst case, the search algorithm marks an intermediate

node at each level of the tree T primal
h in Step 1. Given that it has to perform a standard search

for each of these trees, the overall complexity is O(log2 Vh) for 2-dimensional tree Th, where Vh

is the number of idle periods in the tree. Since the algorithm may have to search all H trees,

the worst case complexity for FF-HA+ is O(H log2 V ), where V = max{Vh}. As a comparison,

the running time of FF-HA is O(HV ), i.e., linear in the number of idle periods, since it has

to traverse H linked-list structures. Since H is typically a small constant, whereas the number

V of idle periods can be quite large (especially for large systems with thousands of servers and

for long time horizons for advance reservations), FF-HA+ is significantly more scalable than

FF-HA.

4.5 Adaptability: Re-planning Capacity and Maximizing Uti-

lization

In this section we describe two mechanisms that make it possible to exploit the efficiency

of FF-HA+ in order to relax the hard deadline assumption and accommodate changes in resource

availability; the implementation of these mechanisms is the subject of ongoing work within our

group.

Replanning Capacity. In our work so far we have assumed that deadlines are hard, i.e.,
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jobs are dropped if they can not be allocated within their deadline. It is possible to make

the algorithm more flexible and increase the overall ability of the system to meet application

QoS requirements by introducing a negotiation process. This process is invoked whenever the

scheduler fails to allocate a job and attempts to reschedule existing reservations in order to

allocate new incoming jobs whenever possible without affecting the QoS of previously scheduled

jobs. This negotiation process may utilize a set of data structures and algorithms similar to the

one we described in the previous section to organize, search, and modify existing reservations.

Our algorithm can also be adapted to handle efficiently changes in job demands. Con-

sider, for instance, a job currently running on a server, and assume that it needs to execute

for a longer period of time than the one it originally reserved (i.e., the original estimate of its

running time was incorrect). In current systems, such jobs are either terminated or preempted

and given low priority for scheduling. Given the low running time complexity of our search

algorithm, there are several options to handling such situations: one can either invoke the ne-

gotiation process to reschedule the job that has reserved the server following the current job, or

one can checkpoint the job, invoke the scheduling algorithm to find the next available feasible

idle period for it, and then migrate the job to complete execution in another server.

Opportunistic Scheduling. To enable users and Grid administrators to exploit the varia-

tions of resource conditions to improve both application and system performance, the FF-HA+

algorithm may be extended to implement opportunistic scheduling. More specifically, new jobs

that have no deadline requirements may use resources as they become available, and they may

be preempted to accommodate new jobs with deadlines. Such an approach will increase utiliza-

tion by filling idle periods that might not be used otherwise, and increases the flexibility of the

system.

4.6 Performance Evaluation

In this section we present simulation results to demonstrate the performance of the FF-

HA+ scheduling algorithm. We used the method of batch means to estimate the performance

parameters we consider (and which we discuss shortly), with each batch consisting of thirty

simulation runs and each run lasting until 106 jobs have been submitted to the Grid scheduler.

We have also obtained 95% confidence intervals for all the results, which are shown in the figures.

In our simulation, we assume that job requests arrive following a uniform distribution in

the range from one minute to 14 days [35]. The duration of each reservation request is randomly
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Figure 4.4: Comparison of FF-HA+ and FF-HU: (a) Work loss rate against system load
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Figure 4.5: Comparison of FF-HA+ and FF-HU: Running time (milliseconds) against system
load

selected so that 80% of the incoming jobs are smaller than 4 hours, and 20% are between 4 and

36 hours; the mean job size is 5.6 hours. These values were chosen based on the experience with
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Figure 4.6: Comparison of FF-HA+ and FF-HU: Utilization against system load.

running real Grid workfolk applications as described in [?, 35]. We let the deadline dj of job j

be uniformly distributed in the interval (rj , rj + q), where q corresponds to the “tightness” of

the deadline; for most of our experiments we assume q = 20 hours unless stated otherwise.

We consider a (H, n)-heterogeneous system with n = 120 servers and H = 3 distinct

service rates. We generated and studied L = 4 computational rate distributions such that L = 1

refers to the least heterogeneous system and L = 4 refers to the most heterogeneous one.

We use four performance metrics in our study. The work loss rate is the fraction of

work that is dropped due to the fact that the deadline of the corresponding jobs cannot be met.

The system utilization is the fraction of time the n servers are busy serving jobs. The waiting

time is the mean amount of time that a job has to wait beyond its ready time until it starts

execution; note that dropped jobs do not contribute to the average waiting time. Finally, the

algorithm running time captures the efficiency of the search algorithm to schedule incoming jobs.

To compute the running time we record the CPU time for each simulation corresponding to 106

jobs. Work loss rate and waiting time are measures of the QoS perceived by the user, system

utilization is a measure of system performance, and running time determines the scalability of

the system.

In our first experiment, we compare the FF-HA+ algorithm to the baseline algorithm

FF-HU we described in Section 4.2. Recall that FF-HU strategy organizes idle periods in a
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Figure 4.7: Comparison of FF-HA+ and FF-HU: Waiting time against system load.

single linked list ordered in ascending order of their starting time; the algorithm traverses the

list and returns the first feasible idle period for a new job, i.e., the one with the earliest starting

time. Note that idle periods with early starting times are at risk of expire unused if new jobs are

not assigned to them. Therefore, this choice of a feasible idle period is expected to lead to low

loss, since assigning a new job to the earliest possible feasible period allows idle periods starting

later to be used for future job requests. On the other hand, the running time of the algorithm

increases quickly with the size of the Grid system and the time horizon for making reservations.

The FF-HA+ algorithm organizes the idle periods in balanced tree structures, hence it scales

well to large Grid systems. However, it does not necessarily return the feasible idle period with

the earliest starting time, hence we expect that its work loss rate will be higher than FF-HU.

But we emphasize that FF-HA+ will always find a feasible idle period for a new job if one exists.

Figure 4.5 confirms the above observations. The figure plots the work loss rate and

running time of the FF-HU and FF-HA+ algorithms against the system load. As we can see

in Figure 4.5(a), the loss rate increases with the system load for both algorithms. The two

strategies exhibit similar loss rates at low loads (when there are sufficient resources to schedule

almost all jobs) and high loads (when the issue is the lack of resources, not the particular

strategy used). However, the FF-HA+ strategy exhibits a higher loss rate at medium loads, as

we expected. A careful examination of our experiments shows that FF-HU incurs less resource
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fragmentation that FF-HA+. This result is due to the fact that FF-HA+ returns the feasible

idle period of maximum capacity among those in its subtree; while this choice was made to speed

up the operation of the algorithm, the side effect is higher fragmentation. On the other hand,

the running time of FF-HU is significantly higher than that of FF-HA+, especially at medium

to high loads; again, this result is consistent with our discussion above.

The system utilization curves in Figure 4.7(a) suggest that FF-HA+ utilizes better

the resources available in the system, i.e., the servers are busy performing work for a longer

fraction of time than under FF-HU. However, since the loss rate for FF-HA+ is slightly higher,

this results implies that FF-HA+ allocates more jobs to slow processors than FF-HU. A more

careful examination of our results reveals that, under FF-HA+, processors with high service rate

exhibit a higher fragmentation; since the capacity of processors with high service rate expires

faster as time progresses, fragmentation of capacity on high-rate servers has a more detrimental

effect on system performance, as exhibited by the higher loss rate of HH-FA+. Figure 4.7(b)

plots the average waiting time that jobs have to wait beyond their ready time. We observe

that jobs have to wait significantly longer under FF-HU compared to FF-HA+. In other words,

although FF-HU schedules a larger fraction of jobs than FF-HA+, the start time of these jobs

is pushed back resulting in longer waiting times.

Finally, Figure 4.8 investigates the impact of different levels of heterogeneity on per-

formance. Figure 4.8 (a) plots the work loss rate against the load for L = 4 different levels

of heterogeneity, where larger values of L imply higher heterogeneity; Figure 4.8 (b) is similar

but plots system utilization against load. We can see that as resources become more heteroge-

neous, the loss rate and system utilization both improve, in many cases significantly so. This

behavior follows from the fact that to increase resource heterogeneity in a given system while

keeping the total service rate constant, as required by expression (4.2), the service rate of a

few fast processors must increase further. In other words, a larger fraction of the total service

rate is concentrated on fewer resources. Consequently, making the system more heterogeneous

introduces a higher degree of statistical multiplexing, whereby fewer high capacity servers are

responsible for serving larger number of customers. The results in Figure 4.8 then are consistent

with the well-known fact from queueing theory that statistical multiplexing improves system

performance.
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4.7 Concluding Remarks

We have considered the problem of advance reservations for jobs with deadlines in

a Grid system with heterogeneous resources. We have developed a geometric representation

of idle periods and jobs that provides new insight and allows for efficient organization of the

reservations. We have developed a scheduling algorithm with good performance that can scale

to large Grid systems and long time horizons. We have also shown that resource heterogeneity

may have a positive impact on performance if taken into account in the design of scheduling

algorithms.
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Chapter 5

Efficient Coallocation Scheduling

Algorithm

One of the major benefits resulting from supporting advance reservations is the pro-

vision of resource co-allocation support to resource managers. In principle such simultaneous

allocation can be achieved by leveraging algorithms as the ones presented in Chapters 3 and 4.

However, the growing trend towards more virtualized environments has emphasized the need to

provide automated solutions to support the management and coordination of multiple resources

that are efficient, effective and scalable.

In light of these observations, this chapter presents an online co-allocation algorithm

that is efficient in co-allocating resources while providing support for advance reservations and

temporal range search, i.e., users can request a list of all resources available within a specific

time window. To achieve this, we partition the temporal space into a set of quanta and use

efficient 2-dimensional data structures to organize the co-allocations. Moreover, we perform an

in-depth comparative analysis of our algorithm against the batch scheduling algorithm under

real workloads. Our results indicates that online scheduling algorithms may achieve–under

most conditions–higher utilization while providing smaller delays and better QoS guarantees;

and all this can be achieved without adding much complexity. Furthermore, we show that our

co-allocation algorithm scales to systems with large number of resources and heavy workloads.

The organization of this chapter is as follows. In Section 5.1 we give a formal description

of the problem being considered. Two major applications of the co-allocation scheduling problem

are described in Section 5.2. In Sections 5.3 and 5.4 we describe in detail the data structure and

algorithm; and in Section 5.5 we analyze their performance. Finally we conclude this piece of

work in Section 5.6.
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5.1 Problem Description

Consider a scheduler S for a large distributed computing system with N servers, which

may be geographically distributed in a network. A user with a job requiring service submits a

request r to S. The request is characterized by a four-parameter tuple (qr, sr, lr, nr), where:

1. qr is the request time, i.e., the time the request is submitted by the user;

2. sr is the earliest time the job can start execution. Note that when advance reservations

are supported sr ≥ qr. Otherwise, sr = qr;

3. lr is the temporal size of the reservation, i.e., estimated duration of the job;

4. nr is the spatial size of the reservation, i.e., the number of servers required for the given

job.

We assume that S maintains a schedule which records, for each server, the time periods

in the future during which the server is reserved for requests that have already been accepted

by the system. In essence, this schedule represents the set of reservations that have been made,

and it guarantees that server resources will be available to the accepted jobs at specific future

times. Figure 5.1 shows an example schedule for a 4-server system. The schedule shows that

at the current time (i.e., time t = 0 in the figure), there are two jobs scheduled for server 1:

job A which is currently in service and will end at time t4 and job B which has reserved the

server from time t25 to t37; similarly, two jobs have been scheduled for server 2, server 3 and

server 4, respectively. Figure 5.1 also shows a service request R for scheduling a new job with

qr = sr = 17, temporal size lr = 12 and spatial size nr = 2.

When a service request r = (qr, sr, lr, nr) for a new job arrives, S immediately runs an

algorithm to determine whether it is feasible to schedule the job. If feasible, S selects multiple

servers that can handle this job, updates its schedule, and returns a reference to the nr servers

to the user; otherwise, the scheduler increases sr by ∆t units of time and retries scheduling

the modified request. If after increasing sr maxRet times, the request r has not been met, the

reservation request is put on hold and submitted to the scheduler for reconsideration at time

t = qr + H, where H represents the time horizon of the system, i.e., the last possible time at

which the system can schedule requests.

The scheduling decision influences the performance perceived by users as reflected by

the fraction of jobs scheduled at sr (or later) and the turnaround times of the jobs. It also

impacts the overall system performance as reflected by system utilization, which is a measure of
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Figure 5.1: 4-server system with co-allocations and advance reservations

how well the overall service capacity of the system is being used. The challenge, therefore, is to

develop efficient online co-allocation algorithms that minimize the fraction of delayed jobs and

maximize the fairness experienced by users while maximizing utilization.

Note that the model just described can be easily extended to support advance reserva-

tions by defining sr > qr as described in Section 5.5.

5.2 Applications

Co-allocation scheduling algorithms are of interest to many applications. In this sec-

tion, we describe two applications of interest within the context of large scale distributed systems.

These applications are being used extensively in real working environments and emphasize the

importance of developing efficient co-allocation mechanisms.

5.2.1 Computing Resources in Virtual Computing Laboratory (VCL)

Computing over the Internet is becoming increasingly popular. Thanks to emerging

infra-structures such as computational Grids and web services, it is possible to develop appli-

cations that support various Internet-wide-collaborations by seamlessly harnessing appropriate

resources. The Virtual Computing Laboratory (VCL) [8] is one initiative established at North
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Carolina State University, which is projected to utilize network and computing resources to

connect all K-20 institutions across the state of North Carolina. One of the main challenges

faced in this project is scalability in terms of resource provisioning and management given the

large number of resources and users. Furthermore, in order to fulfill such a wide user population

the VCL initiative needs to accommodate for multiple applications. Here we refer to two such

applications more relevant to our work: desktop virtualization and high performance computing

(HPC) provisioning.

Desktop virtualization provisioning consists of dispatching virtual desktops customized

to a set of specific requirements for in-class and laboratory experiences. This initiative has the

potential of saving money to schools from hardware and software ownership to IT human re-

sources. Furthermore, it provides schools with access to cutting edge technology that can be

leveraged to support advance educational techniques (e.g., learn by playing, virtual environ-

ments). A second major application of VCL is the provisioning of HPC resources for large

scale jobs. This application targets more sophisticated and demanding users such as graduate

students, scientists and faculty who rely on computing intensive experiments to carry out their

research.

In both applications users request the resource manager a number of resources needed

for a specific time window based on class schedules and/or deadlines. The resource manager

then runs an algorithm to determine the availability of the resources and informs the user. If the

request is granted, the manager sends the authentication information required for the user to

gain access to the resources. Otherwise, it suggests alternative times at which the resources are

available. Note that the algorithm proposed in this work supports both, on-demand (appropriate

for batch schedulers and workloads with best-effort requirements) and advance reservations

requests. Therefore, it is suitable for the VCL workload which is characterized by having mixed

workloads with the majority being on-demand.

5.2.2 Grid Lambda Scheduling

Current research practices tend towards collaboration among institutions across coun-

tries that require high bandwidth connections to use multiple network-connected resources. This

need has been recognized by the government and several initiatives have been funded and estab-

lished to promote such collaboration (e.g., [40]). The realization of this vision depends on the

development of scheduling capabilities that allow researchers to request and manage network

resources on demand; and, the deployment of infrastructure that provides automated, scheduled
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and rapid establishment of lambdas across administrative domains.

Critical to this vision is the scheduling of link wavelengths within each administrative

domain along an end-to-end network path. One proposal [77] that has gained popularity is the

use of PCE (Path Computation Element) [78] to provide with link wavelength scheduling. In

this context, the link wavelength scheduling problem can be formulated as follows: Given a

request–including a source and destination pair, range of wavelengths, a time window and the

estimated length of the connection–the PCE entity finds link wavelength resources along a path

from the source to the destination nodes within the administrative domain to satisfy the request.

In essence this problem is equivalent to the co-allocation problem since the wavelengths on all

links of the path must be allocated and de-allocated simultaneously.

The benefits of implementing the co-allocation scheduling algorithm proposed in this

paper in the context of the aforementioned applications is two-fold. First, given the low com-

plexity of the proposed algorithm, the resource manager can guarantee short response times,

which in turn, improves the overall efficiency as perceived by the user and the system. Second,

two important features of the co-allocation algorithm proposed are that it supports advance

reservation and range search for resources. Range searching means that a request with a given

time window, the algorithm returns all the resources available within that window specified.

Thus, the algorithm enables users to refine their request and optimize for their requirements

through the composition and execution of more complex requests.

5.3 Data Structure

An idle period is characterized by its starting time, ending time and server identifica-

tion. In order to achieve efficiency of the algorithm we partition the temporal space into a set

of quanta q = 1m · · · , Q where Q = dH
lq
eof size lq (time units) each. In this scheme the leftmost

and rightmost quantum contains the earliest and latest available idle periods, respectively. The

rightmost quantum also represents the horizon of the system H. Each idle period is stored in

each quantum it spans over. Figure 5.2(a), illustrates the concept: idle period x is stored in

quanta t0, t10 and t20. One advantageous characteristic resulting from this partioning is that by

tuning lq, the number of idle periods stored in each quantum can be bounded to the number

of servers in the system N , i.e., at most one idle period per server per quantum. For example,

without losing generality, we could assume that there is a minimum reservation request size

and it is equal to lq. Note that small jobs could easily be packed together in order to satisfy

this requirement. This in turn, has a beneficial impact on the running time of the co-allocation



63

Figure 5.2: (a) Reservation request for 2 resources. Note that the remaining time of idle period
u, ruis expressed in terms of t0; idle periods x, y and z are expressed in terms of quantum 10,
and (b) 2-dimensional tree T r

10 containing the idle periods in quantum t10. TS
10 stores the idle

periods in descending order of their starting time.

algorithm as explained later in this section.

For each idle period i stored in a quantum q we keep the following information:

• the starting time sti;

• the ending time eti; and

• the server id idi referring to an identification number for the server offering the idle period

i.

For the co-allocation algorithm we use a 2-dimensional tree Tq to store the idle periods within

each quantum q, q = 1, · · · , Q. This data structure is depicted in Figure 5.2(b). In the tree

corresponding to Tq’s first dimension, tq
s, idle periods are stored in the leaf nodes and arranged

in descending order of their starting time. The information stored at each of the internal nodes

u of tq
s consists of:

• the median starting time of the idle periods stored in the subtree tq
s rooted at u;

• the size of the subtree rooted at u; and
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• a pointer to a secondary binary search tree tq
e.

Tree tq
e corresponds to Tq’s second dimension and stores the idle periods in u’s subtree

in ascending order of their ending time. The information stored at each node v of tree tq
e

consists of:

• the median ending time of the idle periods stored in the subtree tq
e; and

• the size of the subtree rooted at v.

Note that as the time advances the quanta containing idle periods with ending times smaller

than the current time expire. Our approach of partitioning the temporal plane into quanta and

maintaining a separate tree structure for the idle periods within each quantum makes it easier

to handle expired idle periods. Let us assume that the system starts operation at time t = 0,

and that we maintain Q quanta, each of width lq. Since the scheduling horizon (i.e., the time in

the future during which a job can be scheduled) is Q× lq = H, no idle period can end at time

t′ < t + Q× lq where t is the current time.

Consider the leftmost quantum with index q = 1. Initially, the latest time at which an

idle period in this quantum may end(expire) is at time t′ = (Q+1)× lq−ε, and it corresponds to

the scheduling at time t = lq−ε of a request with sr = Q× lq time units in the future. Therefore,

at time t = (Q+1)× lq the tree corresponding to quantum with index q = 1 is discarded sine all

idle periods recorded in the tree have expired. At the same time, a new empty tree is created

to record idle periods falling in the new quantum with index q′ = H. This discard operation is

repeated every lq time units thereafter. All the operations involved in discarding a tree can be

performed in O(1) time with no extra memory cost.

5.4 Online Co-Allocation Scheduling Algorithm

Consider a reservation request r with requesting time, starting time, ending time and

number of resources of qr, sr,lr and nr, respectively.

Given this request, the co-allocation algorithm needs to find nr feasible idle periods

in order to satisfy the request r. An idle period is feasible for a given reservation request if

its starting time (ending time, respectively) is smaller (larger, respectively) than the starting

time (ending time, respectively) of the reservation request. We denote the ending time of a

reservation request by er = sr + lr. To find nr feasible idle periods that satisfy the user request

the algorithm proceeds in two phases as follows:
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Phase 1: The algorithm first searches for every idle period i with sti ≤ sr in the tree tq
s

associated with the quantum q containing sr. We refer to such idle periods as candidate idle

periods since they only meet one condition of the feasibility requirement. Recall that they also

need to end after er in order to be feasible idle periods.

The algorithm starts at the root of the tree and follows left or right subtree based on the value

of sr: If the median starting time of the tree is greater than sr, the algorithm ignores the

left subtree and continues searching recursively in the right subtree. This is because all the

idle periods stored in the left subtree have starting times that are larger than the starting time

needed by the reservation request (sr) and hence, do not classify as candidate idle periods. If the

median starting time is smaller than sr, the algorithm marks the right subtree and continues to

search in the left subtree in a recursive fashion. Note that all the idle periods stored in the right

subtree start earlier than the reservation request and therefore, they can all be safely considered

as candidate idle periods for the given request. The algorithm stops when it reaches a leaf

node. If the idle period stored in the exit leaf node classifies to be a candidate, it is marked. In

addition, the algorithm keeps track of the number of candidate idle periods by adding up the

size parameter of all marked trees into a temporal counter Cs
r . This enables the algorithm to

recognize if there are at most nr candidate idle periods before proceeding to the next phase and

thus, improving its efficiency.

Let us refer back to the example presented in Figures 5.1 and 5.2. In Figure 5.2 (b) the algorithm

marks the right subtree containing idle periods X and V since both classify as candidates. It

then continues to search in the left subtree, marks the tree containing idle period Z and stops

when it reaches the leaf containing idle period Y . As mentioned earlier, depending on the

value of Cr
s, the search algorithm continues to the next phase. More specifically, if Cr

s ≥ nr

it means that there are enough candidate idle periods to be able to satisfy the request and

hence, it is safe to proceed to the next phase. Otherwise, the starting time of the request sr

is increased by ∆t time units and the search algorithm tries to schedule the modified request

again. Following with our previous example, by the end of phase 1, Cr
s = 4 and the algorithm

continues to phase 2. The value of ∆t is specificized by the schedule administrator and can

be tuned to optimize system and user performance. For instance, applications with high QoS

requirements can request the scheduler to retry scheduling their workloads more aggressively,

i.e., by choosing small values of ∆t, in order to minimize the waiting time. This approach would

require policy-based mechanisms that are out of the scope of this work. Our algorithm retries

to schedule a given request maxRet number of times, after which it increases the request time

of the reservation by the horizon of the schedule, i.e., qr = qr + H. In essence, the scheduler
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puts the request on hold and reconsider it later at time t = qr + H.

Phase 2: If at least nr candidate idle periods are found in Phase 1, the algorithm searches

for those idle periods that also meet the condition eti ≥ er,as this condition guarantees their

feasibility for the request being considered. To do this, an algorithm similar to the one presented

in Phase 1 is invoked for each of the secondary trees tq
e associated with the trees previously

marked, following the reverse order in which they were marked. The algorithm proceeds as

follows: Starting at the root, if the median sending time of the tree is larger than er it marks

the right subtree and continues searching in the left subtree. A temporal counter Cr
e is also

used in this phase to keep track of the number of feasible idle periods found for r. If the median

ending time is smaller than er, the algorithm ignores the left subtree and proceeds its search

recursively in the right subtree. The algorithm stops whenever it reaches a leaf node or when

Cr
e ≥ nr, whichever happens first. Cr

e ≥ nr means that there are nr feasible idle periods for

the request being considered, and in this case the search algorithm invokes an instance of the

in-order traversal algorithm. This routine traverses the marked subtrees and ends as soon as nr

idle periods have been retrieved. Similar to Phase 1, if Cr
e < nr the algorithm has failed to find

nr feasible idle periods to satisfy the request and hence sr is increased by ∆t units of time.

Following with our running example in Figures 5.1 and 5.2, the algorithm first checks the subtree

containing Z and then proceeds to the subtree containing Y . Finally, after verifying that the

condition Cr
e = 2 has been met, the algorithm invokes an in-order traversal subroutine to

retrieve idle periods Y and Z.

For each idle period allocated for a given request our algorithm needs to update the

data structure by (1) removing the idle period for each of the trees it spans over; and, (2)

adding any new idle period created. Recall that at most two new idle periods will be created

for each idle period i allocated per request r: x = (stx,s′) and y = (e′r, ety). To insert (remove,

respectively) a new idle period into the data structure the algorithm first compute the quanta

it spans over and then insert (remove, respectively) the idle period in each of them. Note that

the updating process can easily be implemented as a background process (multithreading) thus

maximizing the efficiency of the system.

Range Search As we mentioned earlier, our algorithm allows for range search of resources.

This feature is often required since it permits users to strategically select resources that optimize

for their applications and/or meet specific preferences. For example, a user that is interested

in reserving resources within a time window [ta, tb] may submit a request such that sr = ta,

lr = (tb− ta) and nr ≥ 1. The scheduler runs a simplified version of the algorithm which returns

the set of resources available (if any) without updating the data structures in the scheduler.
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Table 5.1: Features of workload used in the performance evaluation.
Workload No. of processors (nr) No. of jobs Avg estimated lr (hours)

CTC 512 39,734 5.82
KTH 128 28,481 2.46

HPC2N 240 202,825 4.72

Later, the user contacts the scheduler to commit the resources resulting from her selection. Due

to space constraints we do not include this feature and corresponding performance evaluation

in this paper. Instead, we plan on another publication to cover this aspect of the work.

5.4.1 Algorithm Complexity - Worst Case Analysis

In this chapter we have mainly focused on designing an algorithm that is efficient in

co-allocating resources. We exploit the logarithmic complexity of balanced binary search trees

to achieve this goal. In phase 1 the co-allocation algorithm can mark at most log v subtrees,

where v is the number of idle periods in the quantum containing sr and may be bounded to N .

Assuming that for a given request the algorithm advances to phase 2, it takes log v operations

in each of the subtrees marked in Phase 1 for the algorithm to determine if it can satisfy

the request. In the worst case the algorithm retrieves the nr feasible idle periods by invoking

an in-order traversal subroutine which requires O(nr) operations. In addition, the algorithm

needs to update each of the trees containing the nr feasible idle periods. This steps accounts

for O(nr × Q × log v2). Therefore, the overall complexity of our co-allocation algorithm per

quantum is O(nr×m× log v2 +nr). In the worst-case scenario the algorithm is invoked multiple

times per request, i.e, as many times as sr can be increased; we discuss our experience with this

parameter in Section 5.5.

5.5 Performance Evaluation

We use simulation-based experiments to evaluate the performance of our algorithm.

The experiments are based on discrete event-based simulations, where a workload is needed

to drive the simulation. We utilize three real workloads obtained from the Parallel Workload

Archive [79] to investigate the performance of our co-allocation algorithm; all of them represent

medium-large size Grid systems in use today, have been fully sanitized and have been used in

numerous research works [79]. Table 5.1 summarizes each of these workloads. All three systems

implement some variation of a batch scheduler where jobs are placed into one or multiple queues

waiting for resources to become available before execution.
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Table 5.2: Terminology used in co-allocation model
Symbol Description

S Scheduler
idi Id of server offering idle period i

H Horizon of the system
N Total number of servers in the system
Q Number of quanta (dH

lq
e)

s′r Time at which reservation starts
r Reservation represented by tuple (qr, sr, lr, nr)
Tq 2-dimensional tree associated with quantum q

sr Earliest time r can start
tsq Tq’s first dimension containing idle periods sorted in function of their starting time
lr Duration of r

teq Tq’s second dimension containing idle periods sorted in function of their ending time
er sr + lr
lq Length of quantum
nr Number of resources requested by r

Cr
s Counter with no. of candidates idle periods for reservation request r in Phase 1

qr Request time for reservation r

Cr
e Counter with no. feasible idle periods for reservation request r in Phase 2

sti Starting time of idle period i

maxRet Maximum number of times the algorithm tries to reschedule
eti Ending time of idle period i

∆t Time units increase for each schedule retrial

Each log entry in the traces corresponds to a single job and contains information about

the job such as starting time, expected running time, submission time, ending time, number

of processors, user id, computer id, and waiting time. Recall that in our model a request r is

represented by the four-parameter tuple (qr, sr, lr, nr). Therefore, for the purpose of our study

we extracted the same four parameters per log entry. Parameter maxRet was set to Q
2 , i.e., half

the number of quanta and ∆t to 15 minutes for our experiments. Other larger values were tried

but no significant improvement in performance was obtained for those values.

In our study we use three performance metrics:

• Waiting Time (Wr) is a measure of the QoS perceived by the user and refers to the time

between the earliest time the job can start execution (sj) and the actual time it starts

execution, denoted by (s
′
j).

• Temporal-Penalty (Pr
l) is a measure of the fairness experienced by the user and is

defined as: Pr
l = Wr

lr
. In other words, Pr captures the waiting time as a function of the

duration of the job. Intuitively, lower values correspond to a more fair treatment of jobs.
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Figure 5.3: (a) Penalty (Pj) (KTH). (b) Zoom-in of mid-tail.

Ideally Pr < 1.0. In practice, however, this usually does not hold for small jobs. This will

be further explained when we discuss the results later in this section.
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• Spatial-Penalty (Pr
n) also measures the fairness experienced by the user and is repre-

sented by the average Wr as a function of the spatial-size of the job (nr). Intuitively, the
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larger the number of resources needed by a given job the harder it is for S to schedule the

job and therefore, the longer the waiting time.

We organize our performance evaluation in two parts. First, we investigate the perfor-

mance of our on-line algorithm against the performance obtained from the traces where batch

scheduling is used. Second, we study the impact of introducing support for advance reservations

in our algorithm.

5.5.1 On-line Co-Allocation vs. Batch Scheduling

In this part of the performance evaluation we investigate the difference in performance

between our on-line co-allocation algorithm and the batch scheduling algorithm. To achieve this

we run our simulation driven by the workload traces and assume that qr = sr. In other words,

the co-allocation algorithm tries to schedule the request as soon as it is received. If it fails to

satisfy the request then it increments sr as described in Section 5.4.

Figure 5.3 (a) plots the temporal-penalty (Pj
l) experienced by jobs when using both

scheduling algorithms for KTH workload. We observe that small jobs experience a higher

temporal-penalty – a factor of six – under the batch scheduler as compared to our online co-

allocation algorithm. A more careful look at the mid-tail of both curves (2 hours ≤ lr ≤
10 hours) in Figure 5.3 (b) shows that larger jobs are more penalized under our online algo-

rithm. Similar results were found for the other two workloads: for the lack of space and to

preserve graph clarity, we are omitting those results in here. These results are somehow counter-

intuitive considering that most batch schedulers implement some sort of backfilling, i.e., allow

small jobs to leap ahead in the queue as long as they don’t delay the reservation corresponding

to the job at the head of the queue, and therefore it is expected that small jobs would expe-

rience a relative lower degree of penalty. A more detailed analysis of the traces reveals that

our algorithm is more efficient in finding idle periods to allocate incoming small jobs without

delaying them much. This is reflected by the small number of times that the algorithm needs

to reschedule (by increasing sr) small jobs as observed in our simulations. We further discuss

this observation later in this section. On the other hand, batch schedulers find it difficult to

recognize resources available to fit small jobs due to the high fragmentation of resources and the

dominant presence of jobs that are large in spatial and temporal dimension.

Figure 5.4 (a) shows the waiting time (Wr) distribution for both algorithms under two

workloads, CTC and KTH. Let us first consider the curves for the CTC workload. Under our

online scheduler most jobs have a waiting time smaller than 2 hours. This is an improvement
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of nearly a factor of two when compared to the batch scheduler. Furthermore, the tail length

of both curves differ by hundreds of hours, with the maximum waiting times being 19 hours

for our online scheduler and much higher 674 hours for the batch scheduler. The results for

the KTH workload are slightly different in that more jobs wait for less than 1 hour under the

batch scheduler as compared to our algorithm. However, the waiting time distributions even

out before 2 hours. Similar to the CTC workload, the length of the tails differ by a couple of

hundred hours with the maximum waiting time for the online scheduler and the batch scheduler

being 75 hours and 272.5 hours, respectively.

We make two major observations regarding these results. First, as shown in Fig-

ure 5.4 (b), most jobs in the KTH workload have a duration smaller than 2 hours. This results

in higher resource fragmentation, impeding the scheduling algorithm from finding feasible idle

periods to allocate for incoming jobs. This is in contrast to the CTC workload where at most

14% of all jobs are smaller than 2 hours. This suggests that the performance of our algorithm

is not oblivious to the workload, which is a common observation in most scheduling algorithms.

Second, the large difference in the tail length for both workloads suggests that by keeping a

look-ahead view till the horizon H our algorithm can pack incoming jobs more efficiently and

hence improve the utilization of the system.

To finalize this part of our evaluation, in Table 5.3 we present the number of retrials,

i.e., number of times the scheduler increments sr per request, as a function of the spatial size

for workloads CTC and KTH. In order to obtain results that are statistically significant we

calculate the average number of retrials as a function of nr in groups of 50 servers. For instance,

the first column corresponds to the average number of retrials for jobs such that 0 < nr ≤ 50.

Blank spaces in the table represent cases in which there were no requests with nr values within

the corresponding range. It can be observed from the Table that as nr increases the number

of retrials increases as well. This can be explained from the fact that as jobs demand more

resources the fragmentation in the system increases and it becomes harder for the algorithm to

schedule incoming requests. We also observe a larger number of retrials for the KTH workload

as compared to CTC workload. This is due to the fact that KTH exhibits higher fragmentation

as a result of KTH’s temporal size distribution (see Figure 5.4 (b)).

Table 5.3: Number of retrials as a function of the spatial size of the workloads for CTC and
KTH

Workload/(nr) (0:50] (50:100] (100:150] (150:200] (250:300] (350:400]
CTC (No. of retrials) 2.96 5.34 7.22 13.25 — 127.44
KTH (No. of retrials) 10.27 60 120 — — —
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Figure 5.6: (a) Average Waiting Time (Wt) as a function of job spatial-size for the CTC work-
load. (b) Average Waiting Time (Wt) as a function of job spatial-size for the KTH workload.
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Figure 5.7: (a) Waiting time distribution (Wt) for CTC workload. (b) Waiting time distribution
(Wt) for KTH workload.

5.5.2 On-line Co-Allocation with Advance Reservations
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Due to the fact that advance reservations are not widely implemented in existing sys-

tems, there are no workload traces in the Parallel Workload Archive [79] that represent the

advance reservation model. In order to evaluate the performance of our algorithm we generated

advance reservation requests by randomly choosing jobs from the workload traces according to

a desired proportion of advance reservations in the experiment. We denote the fraction of jobs

with advance reservations in the system by ρ. For any advance reservation request we randomly

set its requested start time (sr) to be within zero to three hours in the future, as in [27].

Figure 5.7 shows the waiting time distribution Wt for different values of ρ for workloads

CTC and KTH, respectively. In both graphs we observe a peak around 3 hours: this is a

consequence of setting the requested start time to be within zero to three hours as mentioned

earlier. We observe that as ρ increases in the range [0:3] hours the Wt distribution varies for

both CTC and KTH. However, the tail lengths for both remains the same. This observation

indicates that the QoS perceived by the user is oblivious to the number of advance reservations

in the system. We also notice that under the CTC workload our algorithm outperforms the

batch scheduling algorithm for multiple values of ρ. This is in contrast to the results plotted in

Figure 5.7 (b) for KTH where batch scheduling performs better than our co-allocation algorithm

for all values of ρ. Nevertheless, as discussed for Figure 5.4 the tail for the batch scheduler is
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Figure 5.9: Number of operations as a function of ρ for workloads CTC, KTH and HPC2N .

significantly longer than for the online algorithm.

Figure 5.8 presents the average waiting time Wr against ρ. We vary ρ in the range 0 ≤
ρ ≤ 1, where ρ = 0 corresponds to the case in which advance reservations are not supported and

shown by our previous experiment; and, ρ = 1 represents all the jobs using advance reservations.

We observe that Wr increases as ρ increases. This follows intuition since by increasing ρ we

effectively increase the waiting time of more jobs in the system and hence, higher overall waiting

time is observed.

Figure 5.9 depicts the average number of operations performed by the scheduling al-

gorithm to schedule a request r as a function of ρ under the three workloads. The graph shows

that our algorithm scales well as the fraction of advance reservations increases. The reasoning

behind this observation is that when performing advance reservations it is more likely that the

algorithm will find resources available without having to search in multiple quanta, resulting in

few retrials. On the other hand, when scheduling incoming jobs immediately, i.e., sr = qr the

scheduler is more likely to search further quanta after searching in the quantum containing sr.

Therefore, even though increasing ρ increases resource fragmentation in the system, and hence

larger binary search trees are expected, the number of operations remains relatively constant

due to the few number of quanta searched and the balancing feature of the binary search trees

being used.
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It is worth mentioning that events such as servers going down for maintenance are

difficult to infer from the workload traces. Nevertheless, we feel that such events have little

impact on the results due to the variety of workloads and their large sizes. Evidence of this is

the high consistency found across the three workloads for different performance metrics.

5.6 Concluding Remarks

In this work we have considered the problem of co-allocation of resources in large scale

distributed systems. We have developed an online co-allocation algorithm that is efficient in

co-allocating resources while providing support for advance reservations (QoS guarantees) and

range search. We achieve this by partitioning the temporal space into a set of quanta and

by using efficient 2-dimensional balanced search trees to organize the co-allocations. We have

also performed an in-depth comparative analysis of our algorithm against conventional batch

schedulers under real workloads. Our results provide some insightful conclusions indicating that

online scheduling algorithms may achieve–under most conditions–high overall rate of utilization,

while providing smaller delays and better QoS guarantees without adding much complexity. We

also showed that our co-allocation algorithm scales to systems with large number of resources

and heavy workloads.
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Chapter 6

Summary and Future Work

In this thesis we have provided a practical and efficient solution to the problem of

scheduling resources in the emerging highly dynamic Grid environments. More specifically,

we have developed efficient algorithm implementations that support advance reservations and

co-allocation of resources.

To tackle the problem of supporting advance reservations in homogeneous and hetero-

geneous environments we employed concepts from computational geometry and devised efficient

balanced search trees. By doing this, we were able to design algorithms that are efficient and

flexible in handling advance reservations. A comprehensive performance evaluation study us-

ing simulation was conducted to demonstrate that the proposed strategies perform well across

several user and system performance metrics.

We also developed an online co-allocation algorithm that is efficient in co-allocating

resources by means of partitioning the temporal space and by using 2-dimensional balanced

search trees to organize the availability of resources. A comparative analysis of our algorithm

against batch scheduling was also performed. We concluded that online scheduling algorithms

may achieve–under most conditions- high utilization, while providing smaller delays and better

QoS guarantees without adding much complexity.

6.1 Future Work

Our work can be extended in several directions.

1. Extensions to Cloud environments. More specifically, we will research ways of intro-

ducing predictability into the Cloud by applying advance reservations. By doing this we

hope to devise algorithms that make the Cloud more proactive and less reactive.
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2. Workloads of non-deterministic duration. In thesis we assume that users know a

priori the duration of jobs submitted into the Grid. We would like to relax this assumption

by over or under estimating the length of the reservations according to historical data of

workloads and system utilization.

3. In depth experimental and theoretical investigation of batch scheduling vs.

advance reservations. The results obtained from our work on resource co-allocation

led us to the conclusion that advance reservations might achieve better performance as

compared to conventional batch scheduling. We would like to perform an in depth study

to help us shed some lights on this observation.
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