
A Composition Algorithm for the SILO
Cross-Layer Optimization Service Architecture

Manoj Vellala, Anjing Wang, George Rouskas, Rudra Dutta Ilia Baldine Daniel Stevenson
NCSU, Raleigh, NC RENCI, Chapel Hill, NC RTI, RTP, NC

{mvellal, awang, rouskas, rdutta} @ncsu.edu ibaldin@renci.org dstevenson@rti.org

Abstract— We have previously proposed a software architec-
ture for the future Internet called SILO that is specifically
targeted to accommodate cross-layering gracefully. In such an
architecture, composing the services that make up the software
layers for specific data flow requirements emerges as an essential
part of the architectural system. We provide a minimal set
of precedence constraints to express service interactions, and
an algorithm that obtains correct compositions under this set.
The algorithm appears to have a super-polynomial worst case
running time, and we conjecture that the problem is NP-complete.
We show that under some further simplifications of the set of
constraints, the problem is polynomial.

I. INTRODUCTION

One of the new frontiers of networking is pervasive and
ubiquitous networking, enabled by wireless, mobile devices
with low power budgets and other limitations not previously
considered common for data networks. Such networks often
have unique requirements of cross-layer interactions and opti-
mizations; e.g. power-aware routing [1]. Current internetwork-
ing protocols are flexible enough to handle such solutions,
but require custom solutions which make combination of
technologies and evolution difficult if not impossible. In some
cases, the overhead imposed in bending the capability of such
devices to existing network architecture can make the use of
such devices prohibitive and even useless.

Currently, a consensus appears to be forming within the
community regarding the need to think carefully about the
requirements for the Internet in 15-20 years, and to carry
out a focused research agenda to realize this vision, possibly
starting with a “clean slate”. A new initiative of the National
Science Foundation has targeted this issue [2]. Our project
team is currently working on a project that is part of this
initiative [3], with the ability to integrate cross-layer design
solutions as a primary goal. We have previously described
the general characteristics of our SILO architecture (Services
Integration, controL, and Optimization) elsewhere [4], [5]. We
briefly describe the essential points in the next section, and go
on to define the problem of composition.

II. THE COMPOSITION PROBLEM

Fundamentally, the SILO architecture generalizes the con-
cept of layering. The building block is a service, which takes
the place of a protocol layer. Like a protocol layer, it presents
a data interface to a served (upper) and serving (lower) service
(layer), but in addition, it provides (i) a control interface, which

1This research was supported in part by NSF grant # Nets-FIND:0626103.

communicates with a unified control agent, and (ii) a set of
rules for composability. This opens the door to creating unique
protocol stacks with custom cross-layer interaction for distinct
class of applications, or even per individual data flow. Thus
there is no uniform protocol stack that can/need be assumed
to be present on every node. Instead, protocol stacks must be
composed on demand out of available services. We assume
that there is a global ontology of services that is available to
end nodes, perhaps offline (like the “ports” file on UNIX).
However, different services themselves may not be available
at differnt nodes, e.g. a small sensor node may not have a
sophisticated transport service.

A service S1 may require that another service S2 be present
in the protocol stack, and somewhere closer to physical chan-
nel; this is an example of a precedence constraint imposed by
S1. For example, in a topology-controlled wireless network, an
application or transport layer can utilize geographic address-
ing, and depend on a lower layer service to convert to a specific
address depending on the current power-controlled topology;
this means that some of the application or transport logic must
be embedded below the layer that is aware of the power-
controlled topology. To express this, a relation RequiresBelow
must be defined in the ontology of services. Alternatively, two
relations Requires and MustOccurAbove can be defined and
used with an AND condition, to same effect. Similarly one
can conceive of relations such as MustOccurBelow or Forbids.
We allow only first-order relationships, i.e. we do not provide
any way to make assertions equivalent to “if S1 and S2 both
occur in the stack, then S1 must be above if S3 is also present,
but otherwise must be below S2”. However, the first-order
relationships can be combined using AND or OR connectives.

We propose the following minimal set of precedence con-
straints:

Requires,
MustOccurAbove (Above),
MustOccurImmediatelyAbove (ImmAbove),
MustNotOccurImmediatelyAbove (NotImmA).

The latter three are interpreted as “if S1 and S2 both occur
. . . ” conditions. We assert that this set of constraints allows
all first-order relationships to be expressed. We omit a formal
proof; it consists of listing every possible combination of two
services in a stack, and showing that any subset of them
can be allowed (and the rest disallowed) by combining these.
For example, Forbids can be obtained by specifying both S1

MustOccurAbove S2 and S2 MustOccurAbove S1. ontology.



III. COMPOSITION ALGORITHM

The composition problem then can be stated as follows:
given a set of services in the ontology, to obtain an ordering
that is consistent with the precedence constraints in the ontol-
ogy, possibly augmenting the set of services for the purpose.
A straightforward approach can easily guarantee that correct
stacks (obeying all constraints) are constructed. Briefly, the
steps are:

Initialize essential services list from application specification
Designate any service S1 as the top service

Recursively, build the stack below
Si := service last added
If Si Requires any service, add to essential
If Si has an ImmAbove constraint, add it to stack

(unless marked backtrack)
Otherwise, add any other service which can be added

Recurse
// (No other service can be added)
Check to see if stack violates any Above condition

or any essential service is missing
If not, output stack and exit
Else backtrack to remove last service added

Start with some other service as top service

Clearly, this algorithm will produce correct stacks; equally
clearly, it has a very long running time. Many improvements
to running time can be made in the form of sophistications
such as checking each service for violations with services
already on the stack, backtracking several steps when re-
moving a service required by another above, starting with
essential services as top service choice, etc. However, they
leave the algorithm essentially the same, and not guaranteed to
complete in polynomial time. For this reason as well as some
indications from a graph-theoretic modeling, we conjecture
that the problem is NP-complete; however, we do not have
a formal proof at this time. In practice, in ontologies with
reasonable sets of constraints, the version of the algorithm
with all the accelerations runs with very little delay (a few
seconds with an ontology of around fifty services) if there are
a reasonable number of constraints to prune the search.

However, this changes with further drastic simplification of
the set of precedence constraints. If there are no essential ser-
vices designated by the application, and only one of the three
ordering constraints are allowed, together with Requires, the
problem can be solved polynomially. For ease of discussion,
w.l.o.g. we consider a unique top service Ss and a unique
bottom service Se. Further, we consider that the set of services
As that can follow Ss are known, as is the set of services Bs

that can precede Se. In the general case, these can of course
be the set of all services. We consider a digraph where every
service can be represented as a node and the constraints as
edges between them.

a) Above: Between all services excluding Ss and Se,
the edges are of type MustOccurAbove if an edge exists. If
no edge exists between two nodes then there is no ordering
restriction between them. The problem is finding a directed

ordering from Ss to Se. If one of As is also one of Bs, then
Ss, As, Se is a valid ordering and this take linear time in
number of services to check. For the case that an edge exists
from a Bs to an As, if there exists any vertex v such that,
v → As or Bs → v or both are not true, then As, v, Bs is a
valid ordering. If no such v exists then there is no ordering
satisfying the constraints. Finding such a v is again linear in
number of services for a given pair of As and Bs. In the
first two cases the ordering is of length 4 at maximum and in
the second case it is of length 5. Each of the sub-cases is of
polynomial time complexity.

b) ImmAbove: The proof is exactly the same as for the
case above. An easy way to see this is as follows: if between
two services As, Bs there are no edges then we can include
the edges As → Bs and Bs → As and then run Dijkstra’s
algorithm. Here the services Ss and Se are treated like any
other service.

c) NotImmA: Here we construct another graph in which
every edge is an ImmAbove edge. Initially this is a complete
bi-directed graph on the nodes (services). Then remove the
directed edges between any two services u, v if a constraint u
NotImmA v is specified. Now run Dijkstra’s algorithm.

Obviously, even when ImmAbove and NotImmA are both
present, the problem can be solved in polynomial time by
removing the (directed) edges corresponding to the contra-
dicting constraints. (Such contradicting constraints should not
exist if the ontology is consistent). Finally, we note that in
the more general case when ImmAbove and Above are both
present, the problem can still be solved in polynomial time by
the same procedure as in the Above only case. However, the
most general case remains beyond our reach.

IV. CONCLUSION

In this paper, we have articulated the problem of composing
a given partial set of services into a protocol stack obey-
ing pre-specified precedence constraints in a framework of
composable protocols. We have provided a minimal sufficient
set of such constraints, and a correct composition algorithm.
We conjecture that this problem is NP-complete, though it is
polynomial under simpler conditions. Settling the complexity
of the problem under the minimal set, as well as designing
more efficient composition algorithms, is part of our ongoing
work. Our ongoing ontology, as well as service and application
APIs, is available at the project website [3].

REFERENCES

[1] V. Srivastava and M. Motani, “Cross-layer design: A survey and the road
ahead,” IEEE Communications Magazine, vol. 43, no. 12, pp. 112–119,
December 2005.

[2] National Science Foundation, “Future internet design website,”
http://www.nets-find.net/.

[3] “Services integration, control, and optimization,” http://www.net-
silos.net/.

[4] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
silo architecture for services integration, control, and optimization for
the future internet,” in Proceedings of IEEE ICC, Glasgow, Scotland,
June, 2007.

[5] I. Baldine, M. Vellala, A, Wang, G. N. Rouskas, R. Dutta, D. Stevenson,
“A Unified Software Architecture to Enable Cross-Layer Design in the
Future Internet,” in Proceedings of IEEE ICCCN, Turtle Bay, Hawaii,
August, 2007, pp. 26-32.


