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Recursive First Fit (RFF): A Highly Parallel
Optimal Solution to Spectrum Allocation

George N. Rouskas, Chaitanya Bandikatla

Abstract—We revisit the classical spectrum allocation (SA)
problem, a fundamental subproblem in optical network design,
and make three contributions. First, we show how some SA
problem instances may be decomposed into smaller instances
that may be solved independently without loss of optimality.
Second, we prove an optimality property of the well-known
first-fit (FF) heuristic. Finally, we leverage this property to
develop a recursive and parallel algorithm that applies the FF
heuristic to find an optimal solution efficiently. This recursive
first-fit (RFF) algorithm is highly scalable because of two unique
properties: (1) it completely sidesteps the symmetry inherent in
spectrum allocation and hence, drastically reduces the solution
space compared to typical ILP formulations, and (2) the solution
space can be naturally decomposed in non-overlapping subtrees
that may explored in parallel almost independently of each other,
resulting in faster than linear speedup.

I. INTRODUCTION

Spectrum/wavelength allocation (SA/WA) is a problem un-
derlying a range of optical network design problems [1],
including routing and wavelength allocation (RWA) [2]–[5],
routing and spectrum allocation (RSA) [6], [7], traffic groom-
ing [8], [9], and network survivability [10]. The SA and WA
problems may be tackled along with routing in an integrated
manner; various such one-step RWA/RSA approaches have
been developed and are discussed, e.g., in [2], [6], [7]. In
this work, we assume that routing and spectrum/wavelength
allocation are two separate steps: a path is first selected for
each optical connection, and the list of paths is passed to a
spectrum/wavelength assignment algorithm which is responsi-
ble for allocating spectrum or wavelength resources to each
path.

The SA and WA problems are NP-hard [11], hence there
are no polynomial-time algorithms that can optimally solve
general instances of the problems. Consequently, since the
early days of optical network research a wide range of heuristic
algorithms have been developed, including first-fit, best-fit,
most-used, and least-loaded [12], to select which wavelength
or spectrum slots to assign to each traffic demand. These
heuristics represent a variety of design choices in terms of
algorithmic complexity and the amount of network state in-
formation considered. First-fit, one of the earliest and simplest
heuristics that requires no global knowledge, has been shown
to perform well across various network topologies and sets of
traffic demands [2], [13], and is one of the most commonly
used algorithms for spectrum/wavelength assignment.
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Beyond heuristics, numerous ILP formulations for the SA
and WA problems have been developed, typically as part of
ILPs for the more general RSA and RWA problems. However,
these formulations suffer from a serious challenge that relates
to spectrum/wavelength symmetry [14]. As explained in [15]
with reference to the RWA problem, “as the wavelengths
are interchangeable, given an optimal solution of the RWA
problem or of one of its continuous relaxation, one can derive
a large number of equivalent solutions using any permutation
of the wavelengths.” In other words, in a network with W
wavelengths, an ILP solver will have to evaluate all W !
distinct optimal solutions, and hence, its running time can be
prohibitively, albeit unnecessarily, long. Since blocks of con-
tiguous spectrum slots are also interchangeable (for instance,
a request for two slots may be assigned to slots 1 and 2, or 2
and 3, or 3 and 4, and so on), ILP solvers face the same
symmetry challenge in tackling the SA problem.

In earlier work [16] we developed an ILP formulation based
on maximal independent sets (MIS) for the RWA problem in
rings. This formulation does not suffer from symmetry and
can be used to obtain optimal solutions to maximum size
SONET rings with any number of wavelengths in seconds, an
improvement of several orders of magnitude over conventional
ILP formulations. However, MIS-based formulations may not
be applied to general topology networks of realistic size, as the
number of variables increases exponentially with the network
size. In this work we present a solution that overcomes the
symmetry challenge in networks of general topology; to the
best of our knowledge, such a solution has eluded the research
community until now.

As another consideration, handling routing and spec-
trum/wavelength allocation as separate and sequential steps
in network design may lead to suboptimal or even infeasible
solutions [2]. Motivated by the observation that many network
design problems encompass two tasks, routing and resource
allocation, recently we have shown [17] that it is possible
to optimally decouple these two aspects and tackle each
separately. Accordingly, we developed a recursive algorithm
to search the routing space exhaustively yet efficiently. This
work complements our earlier results in [17] by developing
an optimal recursive algorithm for the spectrum allocation
problem.

The remainder of the paper is organized as follows. In
Section II, we define the SA problem we consider in this work
and show how large problem instances may be decomposed
optimally into smaller ones. In Section III we prove an
optimality property of the FF heuristic, and in Section IV
we leverage this property to develop an optimal recursive



algorithm for the SA problem. In Section V we explain how
to use multiple threads to parallelize the execution of the
algorithm. We evaluate the algorithm in Section VI, and we
conclude the paper in Section VII.

II. THE SPECTRUM ALLOCATION (SA) PROBLEM

We consider an optical network with a topology described
by graph G = (V,A), where V is the set of vertices (nodes)
and A is the set of arcs (directed fiber links) in the network. Let
N = |V | be the number of nodes and L = |A| be the number
of directed links; without loss of generality, we assume that if
there is a fiber link from some node A to some other node B in
the network, then there is a fiber link in the opposite direction,
from node B to node A. We are given a set T = {Ti} of traffic
requests, and each request is a tuple Ti = (si, di, pi, ti), where:
• si and di are the source and destination nodes, respec-

tively, of the request,
• pi is the (fixed and pre-determined) physical path between

nodes si and di in the network over which the request
must be routed, and

• ti is the amount of spectrum (e.g., in units of spectrum
slots) required to carry the traffic from si to di.

We consider the following basic definition of the spectrum
allocation (SA) problem:

Definition 2.1 (SA): Given a graph G = (V,A) and a
set T = {Ti = (si, di, pi, ti)} of traffic requests, assign ti
spectrum slots along the physical path pi for each request
Ti so as to minimize the total amount of spectrum used
on any link in the network, under three constraints: 1) each
request Ti is assigned a block of ti contiguous spectrum slots
(contiguity constraint), 2) each request is assigned the same
block of spectrum slots along all links of its path pi (spectrum
continuity constraint), and 3) requests whose paths share a link
are assigned non-overlapping spectrum slots (non-overlapping
spectrum constraint).

In earlier work [11] we have shown that the SA problem
is NP-hard even for chain (i.e., single-path) networks with
four or more links. When all the spectrum demands are equal,
i.e., ti = t ∀i, the SA problem reduces to the wavelength
allocation (WA) problem that can be solved in polynomial time
for chain networks but remains NP-hard for rings or networks
of a general topology [18]. In the next subsection, we show
that under certain conditions, a large SA problem instance
may be decomposed into smaller instances that can be solved
independently.

A. Exact Decomposition

Consider a request set T that can be partitioned into, say,
two sets T1 and T2, such that the paths of requests in T1
use only links in set A1 ⊂ A, the paths of requests in T2
use only links in set A2 ⊂ A, and the corresponding link
sets are disjoint, i.e., A1 ∩ A2 = ∅. In this case, it can
be seen that allocation of spectrum to requests in T1 does
not affect the allocation of spectrum to requests in T2, and
vice versa. Therefore, the original SA problem on set T is
decomposed exactly into two smaller SA instances on request
sets T1 and T2, respectively, that may be solved independently;

Algorithm 1 Request Partition Algorithm
Input:

G = (V,A): network topology
T = {Ti = (si, di, pi, ti)}: set of traffic requests

Output:
A partition of T into subsets that pairwise use disjoint
sets of links

1: {Make a singleton set for each link}
2: for each link lj ∈ A do
3: `j = {lj};
4: end for
5: for each Ti ∈ T do
6: {include all links of the path into the same up-tree, i.e.,

link subset}
7: Fi ← ∅
8: for each lj ∈ pi do
9: Fi ← Union(Fi, F ind(lj))

10: end for
11: end for
12: for each distinct non-empty subset Fi do
13: return the set of requests with paths using links in Fi

14: end for

the solution to the original problem is simply the maximum
of the solutions to the two smaller instances.

Algorithm 1 uses up-tree structures and Union-Find opera-
tions [19] to partition the set T of requests into subsets whose
paths use pairwise disjoint sets of links. Up-trees are used to
represent sets that are pairwise disjoint; the Find operation
is used to determine the set to which an element belongs,
while the Union operation performs the union of two disjoint
sets. The algorithm starts by creating singleton sets `j , each
consisting of one network link lj ∈ A. The algorithm then
considers the requests in T one by one, in arbitrary order. For
each request Ti, it performs a Find operation on each link
lj of the path pi of Ti to locate the up-tree to which link lj
belongs; initially, the up-tree is the singleton set `j . Then, the
algorithm forms the Union of the up-trees to which the links
of Ti belong. As a result, at the end of Line 11, the non-empty
up-trees represent a partition of the link set A such that each
link subset (i.e., up-tree) corresponds to a subset of the request
set T whose paths only use links in that up-tree.

Each Union operation takes O(1) time while each Find
operation takes time that is logarithmic in the number of
singleton sets [19], which in this case is equal to the num-
ber L of links. Therefore, the computational complexity of
Algorithm 1 is determined by the for loop in Lines 5-11, and
is O(KL log(L)), where K is the number of requests in T
and L is the number of links in the network.

Without loss of generality, in the remainder of this paper we
assume that the request set T cannot be further decomposed
into smaller independent request sets using Algorithm 1.

III. THE OPTIMALITY PROPERTY OF THE FF HEURISTIC

Consider the SA problem on graph G and request set
T = {Ti, i = 1, · · · ,K}. Let P be a permutation (i.e.,



an ordering) of the traffic requests Ti. We say that P is a
partial (respectively, complete) permutation if only a subset of
(respectively, all K) requests in T appear in P . Let SOL(P )
denote the solution to the SA problem obtained by the FF
heuristic by considering each traffic request in the order
implied by the permutation P . If P is a complete permutation,
then SOL(P ) is a feasible solution to the SA problem, but
if P is a partial permutation, then SOL(P ) is only a partial
solution to the SA problem.

Let OPT denote the objective value of an optimal solution
to the SA problem. A lower bound LB on the optimal
objective value may be obtained by ignoring any spectrum
fragmentation that may result from enforcing the spectrum
contiguity and continuity constraints, and simply accounting
for the fact that each link l ∈ A must use at least as many
spectrum slots as to carry all the traffic demands whose path
includes this link:

LB = max
l∈A

 ∑
Ti∈T :l∈pi

ti

 (1)

Clearly, for any complete permutation P of the traffic requests
we have that:

LB ≤ OPT ≤ SOL(P ). (2)

We now prove the following optimality property of the FF
heuristic with respect to the SA problem.

Lemma 3.1 (FF Optimality Property): There exists a per-
mutation P ?

FF of the traffic requests such that applying the FF
heuristic to the requests in the order implied by P ?

FF yields an
optimal solution to the SA problem, i.e., SOL(P ?

FF ) = OPT .

Proof. By construction.
Consider an optimal solution to the SA problem with

objective value equal to OPT . Label the slots on each link
as 1, 2, . . . , OPT . By definition, the optimal solution is a
feasible solution that satisfies all three constraints of the SA
problem in that each request Ti is allocated the same block
of ti contiguous spectrum slots on each link along its path
pi, and no other request whose path shares a link with pi is
allocated slots from the same block. Let also fi denote the slot
with the lowest index within the block of ti slots allocated to
request Ti.

Let P ? be the complete permutation in which the requests Ti

are listed in increasing order of fi in the optimal solution, with
ties broken arbitrarily. Consider the block of tj contiguous
spectrum slots allocated to some request Tj by the optimal
solution starting at slot fj . Let us remove this block of tj slots
from the optimal solution. In the remaining partial solution,
it is possible that there exists a block of tj slots that start
at a lower indexed slot f ′j < fj that are available on all
links of path pj . If so, we can allocate the lower-indexed tj
slots starting with slot f ′j to request Tj without affecting the
optimality of the solution.

Based on this observation, we modify the optimal solution
by considering the requests one by one, in increasing order
of fi as listed in permutation P ?. For each request Ti, we
remove its block of spectrum slots that starts at slot fj from the

solution, and we allocate to it an equal block of slots starting at
the lowest possible slot index f ′j in the partial solution, keeping
in mind that f ′j may be equal to fj . This modified solution
must not use more than OPT slots on any link, since any
modifications involve the allocation of lower-indexed spectrum
slots to requests. At the same time, since the starting solution is
an optimal one, the modified solution may not use fewer than
OPT slots on any link. Hence, the modified solution is an
optimal one with objective value equal to OPT . Importantly,
by construction the modified solution is such that no request
may be allocated to a spectrum block that starts at a lower-
indexed slot.

Let P ?
FF be the complete permutation in which the requests

are relabeled so that they are listed in increasing order of f ′i
in the modified solution, and let us apply the FF heuristic to
this permutation. The FF heuristic allocates to each request Ti

a block of ti contiguous slots starting at the lowest-indexed
slot for which such a block is available on all links of path pi.
Therefore, the FF heuristic will construct an optimal solution
that is identical to the modified solution above.

Figure 1 illustrates the construction proof we described
above on a network with four links and eight requests.
Figure 1(a) shows an optimal solution in which the requests
are labeled T1, · · · , T8, in increasing order of their lowest
index slot (we assume that spectrum slot indices increase
from bottom to top of the figure). This is an optimal solution
since the highest assigned spectrum slot on Link 3 is equal to
the lower bound on the traffic demands. Clearly, none of the
requests T1, T2, T3, T4 and T7 may be re-assigned to a block
of slots with a smaller starting index. However, as shown in
Figure 1(b): request T5 may be moved to a lower block that
starts just above request T3; request T6 may be moved to start
just above the block of the newly re-assigned request T3; and
request T8 may be moved to a new block that starts just above
request T1. The new permutation in increasing order of lowest
index slot in Figure 1(b) is: T1, T2, T8, T3, T4, T5, T6, T7. The
FF heuristic produces the optimal solution of Figure 1(b) on
this sequence of requests1.

This FF optimality property helps explain how so many
studies of the SA and WA problems have found the FF
heuristic to perform quite well in diverse problem instances.
However, Lemma 3.1 constructs a permutation P ?

FF on which
the FF is optimal, but does so by modifying an unknown
optimal solution and hence P ?

FF is itself unknown. Never-
theless, the FF optimality property suggests a procedure for
finding P ?

FF : enumerate all permutations of requests, run the
FF heuristic on each permutation, and select the one with the
smallest objective value. Assuming there is traffic between all
node pairs, the size K of the request set is O(N2), where N is
the number of nodes. Therefore, any algorithm that considers
all possible permutations of requests to determine the optimal
spectrum allocation must take time that is exponential in the
size of the network, O(N2!).

1Note that the sub-order of requests with the same lowest slot index has
no impact on the solution produced by the FF heuristic, and hence we could
have used the permutation T1, T8, T2, T3, T5, T4, T6, T7, instead of the one
above.
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Fig. 1. Proof of the FF optimality property: (a) initial optimal solution, (b)
modified optimal solution

In the following section we present a recursive procedure
for searching efficiently the space of request permutations to
determine this optimal solution.

IV. RECURSIVE FIRST FIT (RFF)
A. Branch-and-Bound Algorithm

We have developed a scalable branch-and-bound recursive
first-fit (RFF) procedure, shown as Algorithm 2, to search the
entire space of request permutations. We start with a complete
permutation Pinit in which the K traffic requests Ti, i =
1, · · · ,K, are listed in decreasing order of spectrum demand
ti, and requests with the same demand are listed in decreasing
order of path length. We calculate the lower bound LB on
the optimal solution OPT using expression (1), and also run
the FF heuristic on Pinit to obtain an initial feasible solution
SOL(Pinit) which represents an upper bound on OPT . The
algorithm maintains variable BestSOL that indicates the best
solution it has found so far; this variable is initialized as
BestSOL = SOL(Pinit). Although the recursive procedure
will work with any initial complete permutation of requests,

our earlier work and other related studies [2], [13] indicate
that applying the FF heuristic to the requests in the order
determined by Pinit yields better (i.e., lower) solutions that
leave a relatively small gap between LB and SOL(Pinit).
The RFF procedure then searches the permutation space to find
the permutation that yields an optimal solution, as Lemma 3.1
suggests.

Each recursive call takes two arguments: a tentative per-
mutation P and a Start index. The recursion builds permu-
tations by maintaining a Start index that takes the values
1, 2, · · · ,K, and divides an input permutation in two parts: a
finalized leading sub-permutation (prefix) for which the order
of requests will not be modified in subsequent recursive calls,
and a tentative trailing sub-permutation (suffix) for which the
order of requests is subject to change and will be finalized
by later recursive calls. The Start index indicates the start
of this trailing sub-permutation. Initially, the ordering of all
requests is tentative, and hence the leading sub-permutation is
null and all K requests belong to the trailing sub-permutation.
Accordingly, the first call to RFF is with Start = 1.

The main recursion is the for loop in Lines 10-22 of Algo-
rithm 2. Essentially, the for loop swaps the first request of the
trailing sub-permutation (i.e., the request at index Start) with
all requests in this trailing sub-permutation, including itself
(i.e., requests at index k = Start, · · · ,K). After making the
swap for one value of k, the procedure updates the permutation
(Line 16), and increments the Start index (Line 17) to indicate
that the leading sub-permutation of requests whose order has
been finalized has increased in size by one. It then makes a
recursive call (Line 18) to continue swapping requests of the
trailing sub-permutation (which has decreased by one). These
recursive calls, if allowed to continue without any restriction,
will enumerate all possible K! permutations of the K requests.

However, not all permutations will lead to a solution that is
better than the currently best known one, BestSOL. There-
fore, after making a swap and before making a recursive call,
in Line 14 the algorithm runs the FF heuristic on the leading
sub-permutation as it has been expanded after the swap, and
compares the result to BestSOL. If the result is equal to or
higher than BestSOL, then it is clear that including more
requests to this sub-permutation will produce solutions that
are no better than the best one found so far. In other words,
continuing further down this subtree of the permutation space
is not productive in terms of finding an optimal solution,
and this part of the search space can be safely eliminated.
Consequently, as shown in Lines 15-19, a recursive call is
made only if the FF solution on this leading sub-permutation
is strictly lower than BestSOL.

The base case for the recursion is when the order of all
K requests in an input permutation P has been finalized. A
complete finalized permutation is indicated whenever the input
index Start > K, and this case is handled in Lines 1-7 of the
algorithm. Specifically, the algorithm runs the FF heuristic on
P , and if the solution is strictly better than the best known
solution, the best solution is appropriately updated in Line 4,
before the call returns.

We emphasize that, in the worst case, the RFF procedure
may be forced to generate all, or close to all, possible



Algorithm 2 Recursive First Fit (RFF)
Input:

G = (V,A): network topology
T = {Ti = (si, di, pi, ti}: set of traffic requests
K = |T |: number of traffic requests
Pinit: initial permutation as discussed in Section IV
LB: the lower bound from expression (1)
BestSOL: best solution so far, initialized to SOL(Pinit)
BestP : best permutation so far, initialized to Pinit

Output:
Best permutation and corresponding SA solution

RFF(P, Start)
P : permutation (initial call with P = Pinit)
Start : start index of trailing sub-permutation of P that has
not been finalized (initial call with Start = 1)
{Base Case: All K requests finalized in P}
if Start > K then

2: S ← SOL(P ); {solution obtained by FF on P}
if S < BestSOL then {Update best known solution}

4: BestSOL = S; BestP = P ;
end if

6: return;
end if

8: {Main Recursion}
{Swap P [Start] with all requests that follow it in P}

10: for k = Start; k ≤ K; k++ do
Swap P [Start] with P [k];

12: Plead ← leading permutation P [1] · · ·P [Start];
{All requests in Plead have been finalized}

14: leadSOL← SOL(Plead);
if leadSOL < BestSOL then

16: newP ← permutation after the swap at Line 11;
newStart← Start+ 1;

18: RFF(newP, newStart);
end if

20: {Restore P and proceed to swap the next request}
Swap P [Start] with P [k];

22: end for

permutations of requests and hence take exponential time to
complete. In the next section we show how to speed up the
exploration of the permutation space by executing the RFF
algorithm in parallel using multiple threads.

B. Illustrative Example

To illustrate the operation of the RFF procedure, consider
the set of twenty-six requests {A,B,C, · · · , Z} labeled with
letters of the English alphabet. Figure 2 shows part of the tree
of recursive calls made, with the root of the entire tree repre-
senting the initial call with arguments P = {A,B,C, · · · , Z}
and Start = 1. The figure is generated by assuming that the if
condition in Line 15 of the algorithm is not checked, and hence
all recursive calls are made to generate all 26! ≈ 4.03× 1026

possible permutations of requests. Also, we use red color to
indicate the requests in the tentative trailing sub-permutation,

and green color to indicate the requests in the finalized leading
sub-permutation whose order has been set.

In the initial call, all requests are tentative (and are colored
red), and the for loop in Lines 10-22 runs twenty six times,
each time swapping the first request A of P with each of
the requests in the set, A,B,C, · · · , Z, as indicated in the
figure. The first of these recursive calls is the root of the
leftmost subtree and swaps A with itself; at that point, the
order of A becomes fixed (indicated in the figure by a change
of color from red to green) and does not change for the
remaining recursive calls in this leftmost subtree. The for
loop of the call representing the root of the leftmost subtree
(Start = 2) runs twenty five times, each time swapping the
second request B of the permutation passed to it with each
of the requests B,C,D, · · · , Z in the trailing tentative sub-
sequence. This continues recursively until the 25! leaves of
this leftmost sub-tree are reached, each representing one of the
25! possible permutations with request A in the first position
of the permutation.

The subtrees of the other twenty five children of the root
are similar in that each generates the 25! permutations with
one of B,C, · · · , Z in the leftmost position, respectively. For
instance, the second of the recursive calls from the root of
the whole tree swaps the first request A of P with request
B. Subsequent calls in this subtree swap the second request
with one of A,C,D, · · · , Z, as before, and so on, until all
permutations with B in the leftmost position are generated.
Other subtrees of the root are omitted from the figure, except
that the figure shows the root of the twenty sixth and final
subtree, in which request Z occupies the leftmost position for
all permutations generated in that subtree.

C. Implementation Considerations

The RFF algorithm builds a finalized permutation one
request at a time. Therefore, when it invokes the FF heuristic
in Line 14 on the leading sub-permutation Plead, it is not
necessary to run the heuristic on the entire sub-permutation.
With appropriate bookkeeping (omitted from Algorithm 2
for the sake of clarity and brevity), it is only necessary to
use FF to allocate spectrum for just the most recent request
added to the leading sub-permutation in Line 11 by building
upon the solution created by the calling function. Similarly,
Line 2 of the algorithm does not actually need to run the FF
heuristic at all, it can simply reuse the solution of the calling
function which finalized the complete input permutation P .
This optimization eliminates unnecessary computations and
significantly speeds up the running time of the recursion.

Finally, we note that, while the RFF algorithm was de-
veloped for the basic SA problem of Definition 2.1, it can
be adapted to tackle a wide range of SA problem variants
that may impose constraints on the spectrum assignment.
Constraints on spectrum assignment may be imposed on: indi-
vidual links (e.g., those related to cross-talk [20]), sequences
of links (e.g., constraints related to attack-aware planning [21],
or a combination thereof. To the extent that such constraints
disallow certain requests from being allocated consecutive
spectrum slots, they reduce the size of the permutation space.



Fig. 2. Partial tree of recursive calls for generating all permutations of the set of requests {A,B,C, · · · , Z} using the RFF recursion. The root of the tree
represents the initial call with P = {A,B,C, · · · , Z} and Start = 1.

Accordingly, the RFF algorithm may be modified to perform
appropriate checks while building a permutation incrementally,
and hence eliminate permutations prematurely if it is so
warranted by the constraints.

D. RFF Solution Space, Spectrum Symmetry, and Parallelism

The RFF algorithm searches the request permutation space,
but for each permutation it only considers the spectrum
assignment determined by the FF heuristic. Because of the FF
optimality property (refer to Lemma 3.1), RFF will identify
an optimal solution without the need to consider a different
spectrum assignment for any of the various request permuta-
tions. Consequently, the RFF algorithm completely sidesteps
the symmetry inherent in typical ILP formulations. Such ILP
formulations encompass the exponentially large number of
equivalent solutions due to symmetry [15], and ILP solvers
are forced to explore not only the request permutation space
but also the spectrum permutation space.

Commercial ILP solvers employ numerous optimization
techniques in addition to the branch-and-bound approach that
RFF takes. However, by eliminating symmetry and thus, vastly
reducing the solution space, our MIS-based formulation of the
RWA problem on ring networks [16] outperformed conven-
tional formulations on commercial ILP solvers. RFF accom-
plishes a similar reduction in the solution space for networks
of general topology. While RFF may be further improved
by applying optimization techniques used by commercial ILP
solvers, we consider such improvements as outside the scope
of this work.

A further advantage of the RFF algorithm lies in the fact
that the solution space can be naturally decomposed in non-
overlapping subtrees that may explored in parallel almost
independently of each other, as we discuss next. Importantly,
as we show in Section VI, parallelism leads to faster than
linear speedup in the exploration of the solution space.

V. PARALLEL EXECUTION OF THE RFF ALGORITHM

Returning to Figure 2 which shows the tree of recursive calls
for generating all permutations, we observe that sequences of
calls that belong to non-overlapping subtrees do not interact
with each other and hence may be executed in parallel. In the
RFF algorithm, however, recursive calls in non-overlapping
subtrees are not completely independent of each other: in order
to eliminate the exploration of permutations that do not lead
to better solutions, each call checks and possibly updates the
value of variable BestSOL as shown in Algorithm 2. There-
fore, by locking access to this variable, threads responsible
for non-overlapping subtrees may execute in parallel and will
interfere with each other only in accessing or updating the
value of BestSOL.

Let us assume that there are M threads available to be
executed in parallel, where the value of M depends on the
availability of computing resources such as cores or proces-
sors. Note that, since the number of requests K is O(N2), we
expect that M � K for nation- or continental-scale networks.
One straightforward way to parallelize the execution of RFF
is to assign each of the M threads to a different (first-level)
subtree of the root; e.g., the M subtrees from left to right
in Figure 2, or in any order since each subtree explores a
different part of the permutation space. Upon termination, each
of the M threads will have generated all permutations with
the request corresponding to that subtree in the first position.
At the time a thread terminates, a new thread is spawned
and assigned to one of the subtrees of the root that have not
been explored yet. This process may continue until either all
subtrees have been explored or a time limit has been reached.
In the former case, RFF will return the optimal solution; in the
latter case, the best solution returned by RFF may or may not
be an optimal one. Clearly, other parallelization options are
possible. For instance, one might assign threads to subtrees at
the second or third level from the root; doing so would speed
up the exploration of the corresponding first-level subtree of
the root.



To gain insight on how to best utilize multiple threads to
explore the extremely large permutation space, we run the RFF
algorithm in a single thread (i.e., no parallelism) and recorded
the times at which the algorithm found better solutions (i.e.,
the times at which Line 4 of Algorithm 2 was executed).
Note that a single thread starts at the root node of Figure 2
and explores the tree in a depth-first search (DFS) manner.
Specifically, it follows the leftmost path in the tree until it
either reaches the leftmost leaf or eliminates the rest of the
path, and then it backtracks to the previous node and starts
exploring the leftmost unexplored path from that node in a
similar manner.

Figure 3 shows the improvement in the solutions found by
the RFF algorithm as a function of how long the algorithm has
run, starting from the FF solution it receives as input at time
t = 0 until we terminate the algorithm after 5 hours (note that
the time axis is not in linear scale)2. We show two problem
instances, one for NSFNET and one for the larger GEANT2,
for which RFF finds a solution that is better than FF but is
higher than the lower bound (hence the algorithm runs for the
full 5 hours). It takes less than 5 sec (respectively, 45 sec)
for RFF to find the best solution in the case of NSFNET
(respectively, GEANT2); in the remaining time the algorithm
explores solutions that are not better than the best one found
in the first few seconds.

The trends in Figure 3 are very similar to ones we observed
for all instances of the corresponding networks, and can
be explained by two observations. First, the RFF algorithm
starts with an initial permutation in which the traffic requests
are sorted in decreasing order of spectrum demand. As we
mentioned in Section IV, such a permutation has been shown
to work well for the FF heuristic, and hence, as expected,
the RFF heuristic is able to find good solutions quickly while
searching the solution space around this permutation. Second,
since a single thread traverses the tree of Figure 2 in a DFS
manner, it spends the 5 hours exploring the solution space
just around this initial permutation. Consequently, it misses
any better solutions that exist in parts of the solution space
that are far from the left part of the tree.

These observations indicate that using the whole computa-
tional budget in exploring the same part of the permutation
space is not effective. A better search approach would be to
seek solutions across the entire solution space by 1) dividing
the permutation space in multiple non-overlapping parts, and
2) exploring each part for a short amount of time, as Figure 3
suggests.

To this end, we use multi-threading to equally divide the
computational budget among the various parts of the opti-
mization space defined by the first-level subtrees of the root
in Figure 2. Suppose that we have K requests (and hence,
K first-level subtrees), M threads that may run in parallel,
and a time budget of S time units. In this case, we need
B = dK/Me batches of M threads to cover all subtrees of
the root. Therefore, we spawn M threads and assign them the

2Please refer to the next section where we discuss the two network
topologies we consider, NSFNET and GEANT2, and the traffic distributions
we use to generate random SA problem instances, and we explain how we
derive the normalized solutions shown in the figure.
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Fig. 3. Improvement of RFF solution vs. time, no parallelism (single-thread
execution); time axis not in linear scale

M leftmost subtrees of the root. We let these threads run in
parallel for S/B time units, at which time we terminate them.
We then spawn M new threads to which we assign the next
M unexplored leftmost subtrees of the root, let these run in
parallel for S/B time units, terminate them, and spawn another
set of M threads. We continue in this manner until we have
explored each of the subtrees of the root for exactly S/B time
units.

VI. NUMERICAL RESULTS

A. Simulation Setup

We now present the results of simulation experiments to
evaluate the performance of the RFF algorithm. In our study,
we have considered the two network topologies shown in
Figure 4, namely, the 14-node, 21-link NSFNET and the
32-node, 54-link GEANT2 network. We consider shortest-
path routing, and we use Dijkstra’s algorithm to find the
shortest path (with ties broken arbitrarily) between all source-
destination pairs. We assume that a traffic request may take
one of five possible data rates, namely, 10, 40, 100, 400,
or 1000 Gbps. We also assume that each spectrum slot has
a width of 12.5 GHz, and we adopt the parameters of [22]
to determine the number of spectrum slots required for each
traffic request based on its data rate and path length.

We create random SA problem instances characterized
by two parameters: the network topology (i.e., NSFNET
or GEANT2) and the traffic distribution. Each SA problem
instance consists of one traffic request for each node pair in
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Fig. 4. Network topologies used in our study: (a) NSFNET, (b) GEANT2

the corresponding network topology. For a given node pair,
we generate a random value for its data rate based on one of
three distributions:

1) Uniform: each of the five data rates, 10, 40, 100, 400,
or 1000 Gbps, is selected with equal probability;

2) Skewed low: the rates above are selected with probability
0.30, 0.25, 0.20, 0.15, and 0.10, respectively; or

3) Skewed high: the five rates are selected with probability
0.10, 0.15, 0.20, 0.25, and 0.30, respectively.

Once the data rates between all node pair have been generated,
we assign spectrum slots to the traffic requests as we discussed
above.

We run our experiments on Henry2, a Linux HPC cluster
operated by NC State University that offers on the order of
1,000 compute nodes with well over 10,000 cores [23]. In
our experiments, we let the RFF algorithm run until it either
reaches the lower bound (in which case we know for certain it
has found an optimal solution) or it reaches a 5-hour limit on
running time; while in the latter case we are not certain that
the algorithm has found an optimal solution, the results we
present next indicate that the solution is very close to optimal.

B. RFF Solution Quality

The performance measure we consider is the maximum
number of spectrum slots on any network link as obtained
by either the FF or RFF algorithms. For meaningful compar-
isons between problem instances, we normalize the solutions

returned by FF or RFF by dividing with the lower bound LB
for the corresponding instance from expression (1). Clearly, the
closer the normalized value is to 1.0, the better the solution.

Figures 5 and 6 present results for the NSFNET and
GEANT2 topologies, respectively. Each figure includes three
subfigures, one each for demand matrices generated by the
skewed low, skewed high, and uniform distributions, respec-
tively. Each subfigure plots the normalized FF solution, the
normalized RFF solution, and the normalized lower bound
(the last one as a horizontal line at y = 1.0), for each of 100
random problem instances generated for the stated parameters
(i.e., network topology and traffic demand distribution).

We first note that the FF algorithm produces solutions of
good quality that are within 30% (respectively, 12%) of the
lower bound for the 300 NSFNET (respectively, GEANT2)
problem instances. These results are consistent with earlier
research indicating that the FF algorithm performs well. Re-
garding the RFF algorithm, we observe that it finds better
solutions than FF in most instances. Table I summarizes the
average relative performance of the FF and RFF algorithms
in terms of how far (in percentage) terms their solutions are
from the lower bound, the number of instances (out of 100
for each distribution) that the RFF produces better solutions
than FF, the number of instances that RFF finds a solution
equal to the lower bound (i.e., a guaranteed optimal solution),
and the average absolute difference between the FF and RFF
solutions, in spectrum slots. For the NSFNET (respectively,
GEANT2) network, RFF improves on the FF solution in 47-
53 (respectively, 71-79) instances, depending on the traffic
distribution, of which it finds a solution equal to the lower
bound in 20-26 (respectively, 14-33) instances. Also, although
the percentage improvement over the FF solution is lower for
the GEANT2 network, the absolute difference is more than
twice that for the NSFNET network. In other words, even
a small improvement in the larger GEANT2 network results
in significantly larger spectrum savings, especially since it
applies across many more network links.

C. Parallel Exploration of the RFF Solution Space
Let us now explore how parallelism helps speed up the

exploration of the solution space. Recall that the RFF solution
space consists of the O(K!) permutations represented by the
leaves of the RFF tree in Figure 2. We consider two metrics
that provide insight into the number of permutations that the
algorithm is able to explore within a certain amount of time:

1) The number of leaf nodes of the RFF tree the
algorithm visits. This metric represents the number of
times Line 2 of the RFF algorithm 2 is executed, i.e.,
the number of times the algorithm evaluates a complete
permutation of the K requests.

2) The number of branches of the RFF tree that the
algorithm trims. This metric represents the number of
times the algorithm skips the recursive call in Line 18
of the RFF algorithm after making a determination in
Line 14 that continuing with the current partial permu-
tation will not lead to a better solution.

Note that each leaf node visited represents a complete per-
mutation that the algorithm evaluates directly. On the other



TABLE I
RELATIVE PERFORMANCE OF FF AND RFF ALGORITHMS

Traffic FF RFF Avg Diff
% from LB % from LB # instances < FF # instances = LB (slots)

NSFNet Skewed High 9.28% 5.46% 53 20 3.78
Skewed Low 11.73% 6.55% 52 26 2.65

Uniform 10.12% 6.01% 47 23 3.08
GEANT2 Skewed High 2.66% 1.22% 79 14 8.44

Skewed Low 6.58% 3.54% 77 30 7.76
Uniform 2.88% 1.37% 71 33 6.47

TABLE II
EXPLORATION OF THE PERMUTATION SPACE, NSFNET. PROBLEM INSTANCE WITH LB=49 AND FF SOLUTION=58

# Threads Solution < FF Metric 1 hr 2 hrs 3 hrs 4 hrs 5 hrs
4 54, Thread #4, # Leaves Visited 34,296 66,272 93,306 131,155 163,585

at 4 sec # Branches Trimmed 216,663 418,252 588,868 827,575 1,032,258
8 54, Thread #7 # Leaves Visited 69,273 134,123 188,173 263,795 328,588

at 4.3 sec # Branches Trimmed 434,245 838,736 1,176,169 1,648,114 2,052,756
12 54, Thread #4 # Leaves Visited 127,182 246,496 345,935 485,053 604,269

at 4.6 sec # Branches Trimmed 628,374 1,214,951 1,703,769 2,388,076 2,974,743
16 54, Thread #15 # Leaves Visited 209,913 406843 570967 800663 997538

at 4.2 sec # Branches Trimmed 929,582 1,798,143 2,521,971 3,535,185 4,403,676
20 56, 54, Thread #1, #18 # Leaves Visited 275,740 5,59,773 843,719 1,127,720 1,411,716

at 4, 4.1 sec, respectively # Branches Trimmed 1,136,325 2,302,512 3,468,185 4,634,389 5,800,467
24 54, Thread #1 # Leaves Visited 339,936 688,602 1,037,170 1,385,642 1,734,152

at 4.4 sec # Branches Trimmed 1,334,599 2,698,611 4,062,554 5,426,799 6,790,888
32 54, Thread #20 # Leaves Visited 469,795 930,734 1,391,734 1,852,580 2,313,480

at 4.3 sec # Branches Trimmed 2,000,565 3,956,799 5,913,386 7,868,762 9,824,610

TABLE III
EXPLORATION OF THE PERMUTATION SPACE, GEANT2. PROBLEM INSTANCE WITH LB=220 AND FF SOLUTION=232

# Threads Solution < FF Metric 1 hr 2 hrs 3 hrs 4 hrs 5 hrs
4 N/A # Leaves Visited 29,876 60,526 91,167 121,817 152,466

# Branches Trimmed 51,533 104,193 156,846 209,507 262,157
8 N/A # Leaves Visited 33,007 68,333 103,657 138,984 174,322

# Branches Trimmed 241,861 499,835 757,688 1,015,629 1,273,617
12 N/A # Leaves Visited 32,797 68,037 103,282 138,510 173,755

# Branches Trimmed 348,867 722,884 1,096,902 1,470,812 1,844,861
16 N/A # Leaves Visited 27,625 58,646 89,632 120,635 151,622

# Branches Trimmed 426,081 902,905 1,379,765 1,856,722 2,33,3593
20 227, Thread #18 # Leaves Visited 7,831 17,797 27,765 37,733 47,679

at 33 sec # Branches Trimmed 836,549 1,780,946 2,725,429 3,669,986 4,612,521
24 227, Thread #18 # Leaves Visited 7,147 15,622 24,078 32,541 41,009

at 42 sec # Branches Trimmed 927,868 1,894,965 2,862,343 3,829,659 4,797,085
32 226, Thread #26 # Leaves Visited 8,241 17,536 26,835 36,136 45,436

at 41 sec # Branches Trimmed 1,298,205 2,703,580 4,108,992 5,514,505 6,919,965

hand, each branch trimmed corresponds to multiple complete
permutations with the same prefix (i.e., the same leading
partial permutation) that the algorithm evaluates indirectly and
does not consider, after determining in Line 18 that they
cannot lead to a better solution. The number of such complete
permutations for each branch depends on the level of the tree
where the recursive call backtracks.

Tables II and III present these two metrics as a function
of both time and number of threads employed, for one
problem instance for the NSFNET and GEANT2 topologies,
respectively. For the results shown in these tables, we started
a number m of threads (m = 4, 8, 12, 16, 20, 24, 32) at time
t = 0 and let all threads run until either the lower bound was

reached or 5 hours elapsed, whichever occurred first. Each
of the threads explores a different subtree of the root (refer to
Figure 2), and hence, a different part of the permutation space;
we assigned the m threads to the leftmost m subtrees of the
root. Results very similar to the ones shown in the two tables
have been obtained for all problem instances we explored.

Let us first consider Table II which shows results for an
NSFNET problem instance with a lower bound equal to 49
and an initial solution obtained by the FF heuristic equal
to 58. As indicated in the second column of the table, RFF
was able to find a better solution equal to 54 within the first
5 seconds; for the remaining almost 5 hours the search of
the permutation space did not yield a better solution. Note



that solutions with the same objective value are found by
different threads, depending on which thread was able to reach
a solution first; since each thread explores a different subtree,
solutions obtained by different threads correspond to different
permutations even though they have the same objective value.

From Table II, we first observe that, as expected, for a
specific number m of threads employed, both the number
of leaf nodes visited and the number of branches trimmed
increase almost linearly with time. Now consider how these
numbers change for a given amount of running time as the
number of threads increases. As we can see, both the number
of leaves visited and the number of branches trimmed increases
almost linearly as the number of threads increases from 4 to 8
and then to 12. However, the increase is faster than linear as we
employ 16 or more threads. As an example, consider the full
5-hour running time. With only 4 threads, RFF visits ∼160K
leaves and trims ∼1M branches; however, with 32 threads, the
algorithm visits ∼2.3M leaves and trims ∼9.8M branches. In
other words, an 8× increase in number of threads results in a
14× increase in leaves visited and a 9.5× increase in branches
trimmed. These trends can be explained as follows. The RFF
algorithm visits a leaf F when the permutation it represents
has a solution close to the best solution available and hence
the branch where F resides cannot be trimmed earlier. Note
that other leaf nodes in the vicinity of F correspond to
permutations with the same (long) prefix as the permutation
of F . If these permutations also represent good solutions, the
algorithm will visit them quickly, with just a small amount
of backtracking (i.e., without having to return all the way to
the original call and start the exploration from the top of the
subtree). We also note from the second column of Table II that
multiple solutions with the same value exist in different parts
of the tree. With multiple threads running in parallel, the RFF
algorithm is able to find clusters of good solutions with the
same long prefix in various parts of the tree and visit them,
resulting in the faster than linear exploration of leaf nodes.
At the same time, with multiple threads the RFF algorithm
will also explore in parallel parts of the permutation space
that contain solutions that are far from optimality. Because
of good solutions found in other parts of the RFF tree, the
algorithm is able to trim branches that do not lead to promising
solutions early on, also resulting in faster than linear increase
in the number of branches trimmed; we will elaborate on this
phenomenon shortly.

Let us now turn our attention to Table III which shows
the results of similar experiments on a GEANT2 problem
instance with lower bound equal to 220 and an initial FF
solution of 232. We first observe that, for the same number of
threads and amount of time, the RFF algorithm visits fewer
leaf nodes, and trims fewer branches, in the GEANT2 case
than for NSFNET. This result can be explained by noting that
since GEANT2 is a larger network than NSFNET, the number
of requests and their path lengths are larger for GEANT2 than
for NSFNET. Hence, each recursive call for the GEANT2
network takes longer to execute than a call for the NSFNET
because 1) the for loop in Line 10 of the RFF algorithm 2
has a larger number of requests to consider, and 2) Line 14
that updates the solution by applying FF has to check a larger

number of links, on average, along the path of each request.
We again observe that, for given number of threads, the

number of leaf nodes visited and the number of branches
trimmed increases almost linearly with time. But this instance
helps demonstrate an important advantage of using multiple
threads to explore the permutation space. Specifically, when
using up to 16 threads, the RFF algorithm cannot find any
solution that is better than the initial FF solution; apparently,
there are no solutions in the parts of the 16 leftmost subtrees of
the RFF tree that the threads are able to explore within 5 hours.
However, with 20 threads running in parallel, thread #18 finds
a better solution within the first minute. Since this solution
(227) is much closer to the lower bound (220), the other
threads, including the 16 exploring the leftmost subtrees, may
now eliminate permutations much earlier without the need to
traverse a path down to a complete permutation at a leaf node.
As a result, we observe that, for a given amount of computation
time, the number of leaf nodes visited drops sharply as we
go from 16 to 20 threads whereas the number of branches
trimmed almost doubles. A similar phenomenon is observed
as we increase the number of threads from 24 to 32, and thread
#26 finds an even better solution (226). This solution allows
other threads to trim more branches even earlier, and hence
there is another significant increase in the number of branches
trimmed within a specific amount of time.

As a general observation, when multiple threads explore
different parts of the optimization space concurrently, the RFF
algorithm is able to identify better solutions faster; in turn, a
better solution identified by any thread allows all threads to
terminate a recursive call earlier (i.e., higher in their part of the
tree), and hence trim more branches. In the GEANT2 problem
instance shown in Table III, within the 5-hour time limit, four
threads trim ∼262K branches, whereas 32 threads trim ∼6.9M
branches, a 26-fold increase. Moreover, each branch trimmed
includes multiple permutations that are effectively “explored”
and determined to contain solutions worse than the current
best one. Consequently, parallelism allows for faster than
linear increase in the amount of the optimization space that is
explored (as a function of the number of threads employed)
within a given computational budget.

VII. CONCLUDING REMARKS

We have developed RFF, an algorithm that applies the FF
heuristic recursively to solve optimally the SA problem. The
algorithm is highly parallel and produces solutions that are
close to the lower bound, generally within just one minute for
the NSFNET and GEANT2 topologies we considered in this
work. Our group is currently working to extend this work in
three directions: 1) develop effective methods to explore the
solution space in parallel, including randomization techniques,
2) adapt RFF to problems that impose additional constraints on
spectrum allocation, and 3) integrate RFF with the algorithm
in [17] so as to solve large RSA problems efficiently.
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Fig. 5. Normalized solutions to 300 problem instances, NSFNET
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Fig. 6. Normalized solutions to 300 problem instances, GEANT2


